Detection of β-amyloid oligomers as a predictor of neurological outcome after brain injury

2013 ◽  
Vol 118 (6) ◽  
pp. 1336-1342 ◽  
Author(s):  
Joshua Wayne Gatson ◽  
Victoria Warren ◽  
Kareem Abdelfattah ◽  
Steven Wolf ◽  
Linda S. Hynan ◽  
...  

Object Traumatic brain injury (TBI) is known to be a risk factor for Alzheimer-like dementia. In previous studies, an increase in β-amyloid (Aβ) monomers, such as β-amyloid 42 (Aβ42), in the CSF of patients with TBI has been shown to correlate with a decrease in amyloid plaques in the brain and improved neurological outcomes. In this study, the authors hypothesized that the levels of toxic high-molecular-weight β-amyloid oligomers are increased in the brain and are detectable within the CSF of TBI patients with poor neurological outcomes. Methods Samples of CSF were collected from 18 patients with severe TBI (Glasgow Coma Scale Scores 3–8) and a ventriculostomy. In all cases the CSF was collected within 72 hours of injury. The CSF levels of neuron-specific enolase (NSE) and Aβ42 were measured using enzyme-linked immunosorbent assay. The levels of high-molecular-weight β-amyloid oligomers were measured using Western blot analysis. Results Patients with good outcomes showed an increase in the levels of CSF Aβ42 (p = 0.003). Those with bad outcomes exhibited an increase in CSF levels of β-amyloid oligomers (p = 0.009) and NSE (p = 0.001). In addition, the CSF oligomer levels correlated with the scores on the extended Glasgow Outcome Scale (r = −0.89, p = 0.0001), disability rating scale scores (r = 0.77, p = 0.005), CSF Aβ42 levels (r = −0.42, p = 0.12), and CSF NSE levels (r = 0.70, p = 0.004). Additionally, the receiver operating characteristic curve yielded an area under the curve for β-amyloid oligomers of 0.8750 ± 0.09. Conclusions Detection of β-amyloid oligomers may someday become a useful clinical tool for determining injury severity and neurological outcomes in patients with TBI.

2010 ◽  
Vol 24 (8) ◽  
pp. 2716-2726 ◽  
Author(s):  
Hiroaki Fukumoto ◽  
Takahiko Tokuda ◽  
Takashi Kasai ◽  
Noriko Ishigami ◽  
Hiroya Hidaka ◽  
...  

2010 ◽  
Vol 6 ◽  
pp. S512-S512
Author(s):  
Takahiko Tokuda ◽  
Hiroaki Fukumoto ◽  
Takashi Kasai ◽  
Noriko Ishigami ◽  
Masaki Kondo ◽  
...  

Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2434-2437
Author(s):  
SR Newcom ◽  
LH Muth ◽  
ET Parker

High molecular weight transforming growth factor-beta (TGF beta) is a physiologically active TGF secreted by nodular sclerosing Reed- Sternberg cells. Five monoclonal murine antibodies were prepared that distinguished Hodgkin's TGF beta from platelet-derived TGF beta using an enzyme-linked immunosorbent assay, neutralization of biologic activity, and Western blotting. These monoclonal antibodies directed at unique antigenic determinants (epitopes) of Hodgkin's TGF beta will allow further characterization of the role of Hodgkin's TGF beta in Hodgkin's disease and related entities.


2018 ◽  
Vol 9 (1) ◽  
pp. 117-122
Author(s):  
Han Daicheng ◽  
Xia Shiwen ◽  
Zhu Huaping ◽  
Liu Yong ◽  
Zhou Qianqian ◽  
...  

AbstractBackgroundPresent investigation evaluates the beneficial effect of fangchinoline on cerebral ischemia induced neuronal degeneration in neonatal rats and also postulates the possible mechanism of its action.MethodologyCerebral ischemia was produced by the ligation of right common carotid artery in neonatal rats on postnatal day 5 (P5) and further pups were treated with fangchinoline 3, 10 and 30 mg/kg, i.p. for the period of 3 days. Effect of fangchinoline was estimated by determining the brain injury and enzyme linked immunosorbent assay (ELISA) method was used for the estimation of pro-inflammatory mediators and markers of oxidative stress in the cerebral tissues of neonatal rats. Moreover western blot assay and histopathology study was also performed on the brain tissue.ResultsResult of this investigation reveals that the percentage of brain injury significantly reduces and enhancement of myelin basic protein in the cerebral tissues of fangchinoline than ischemic group. Treatment with fangchinoline attenuates the altered level of proinflammatory mediators and markers of oxidative stress in the cerebral tissue of cerebral ischemia induced neuronal injury neonatal rats. Moreover expressions of inducible nitric oxide synthtase (iNOS), vascular endothelial growth factor (VEGF), p53 and nuclear receptor factor-2 (Nrf2) in the brain tissue attenuated by fangchinoline treated group.ConclusionIn conclusion, fangchinoline ameliorates the cerebral ischemia induced neuronal injury in neonatal rats by enhancing angiogenesis molecules.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1268-1276 ◽  
Author(s):  
F van Iwaarden ◽  
PG de Groot ◽  
JJ Sixma ◽  
M Berrettini ◽  
BN Bouma

Abstract The presence of high-molecular weight (mol wt) kininogen was demonstrated in cultured human endothelial cells derived from the umbilical cord by immunofluorescence techniques. Cultured human endothelial cells contain 58 +/- 11 ng (n = 16) high-mol wt kininogen/10(6) cells as determined by an enzyme-linked immunosorbent assay (ELISA) specific for high-mol wt kininogen. High-mol wt kininogen was isolated from cultured human endothelial cells by immunoaffinity chromatography. Nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that endothelial cell high-mol wt kininogen consisted of five protein bands with mol wts of 95,000, 85,000, 65,000, 46,000, and 30,000 daltons. Immunoblotting of the endothelial cell high-mol wt kininogen by using specific antisera against the heavy and light chain indicated that the 95,000-, 85,000-, and 65,000-dalton bands consisted of the heavy and light chain whereas the 46,000- and 30,000-dalton bands reacted only with the anti-light chain antiserum. Immunoprecipitation studies performed with lysed, metabolically labeled endothelial cells and monospecific antisera directed against high-mol wt kininogen suggested that high-mol wt kininogen is not synthesized by the endothelial cells. Endothelial cells cultured in high-mol wt kininogen-free medium did not contain high-mol wt kininogen. These studies indicate that endothelial cell high-mol wt kininogen was proteolytically cleaved in the culture medium and subsequently internalized by the endothelial cells. Binding and internalization studies performed with 125I-labeled, proteolytically cleaved, high-mol wt kininogen showed that endothelial cells can indeed bind and internalize proteolytically cleaved high-mol wt kininogen in a specific and saturable way.


2016 ◽  
Vol 75 (8) ◽  
pp. 770-778 ◽  
Author(s):  
Patricia M. Washington ◽  
Mark P. Burns

Abstract The apolipoprotein E (apoE) protein is involved in clearance of β-amyloid (Aβ) from the brain; and the APOE4 gene is associated with Aβ plaque formation in humans following traumatic brain injury (TBI). Here, we examined the association between apoE and Aβ 40 after experimental TBI and the effects of APOE alleles on this relationship. We report a biphasic response of soluble apoE protein after TBI with an acute reduction at 1 day postinjury followed by an increase at 7 days postinjury. TBI-induced Aβ 40 levels decreased as soluble apoE levels increased. In APOE4 mice there was a diminished apoE response to TBI that corresponded to prolonged accumulation of TBI-induced Aβ 40 versus that in APOE3 mice. Amyloid precursor protein processing was similar in APOE3 and APOE4 mice suggesting that impaired clearance was responsible for the abnormal accumulation of Aβ 40 in the latter. Treatment of APOE4 mice with bexarotene for 7 days increased apoE4 protein levels but was not sufficient to reduce TBI-induced Aβ 40 . Thus, rapid clearance of TBI-induced Aβ 40 occurs in mice but these pathways are impaired in APOE4 carriers. These data may help explain the deposition of Aβ in APOE4 carriers and the increased incidence of brain Aβ plaques following TBI.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1268-1276 ◽  
Author(s):  
F van Iwaarden ◽  
PG de Groot ◽  
JJ Sixma ◽  
M Berrettini ◽  
BN Bouma

The presence of high-molecular weight (mol wt) kininogen was demonstrated in cultured human endothelial cells derived from the umbilical cord by immunofluorescence techniques. Cultured human endothelial cells contain 58 +/- 11 ng (n = 16) high-mol wt kininogen/10(6) cells as determined by an enzyme-linked immunosorbent assay (ELISA) specific for high-mol wt kininogen. High-mol wt kininogen was isolated from cultured human endothelial cells by immunoaffinity chromatography. Nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that endothelial cell high-mol wt kininogen consisted of five protein bands with mol wts of 95,000, 85,000, 65,000, 46,000, and 30,000 daltons. Immunoblotting of the endothelial cell high-mol wt kininogen by using specific antisera against the heavy and light chain indicated that the 95,000-, 85,000-, and 65,000-dalton bands consisted of the heavy and light chain whereas the 46,000- and 30,000-dalton bands reacted only with the anti-light chain antiserum. Immunoprecipitation studies performed with lysed, metabolically labeled endothelial cells and monospecific antisera directed against high-mol wt kininogen suggested that high-mol wt kininogen is not synthesized by the endothelial cells. Endothelial cells cultured in high-mol wt kininogen-free medium did not contain high-mol wt kininogen. These studies indicate that endothelial cell high-mol wt kininogen was proteolytically cleaved in the culture medium and subsequently internalized by the endothelial cells. Binding and internalization studies performed with 125I-labeled, proteolytically cleaved, high-mol wt kininogen showed that endothelial cells can indeed bind and internalize proteolytically cleaved high-mol wt kininogen in a specific and saturable way.


Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2434-2437 ◽  
Author(s):  
SR Newcom ◽  
LH Muth ◽  
ET Parker

Abstract High molecular weight transforming growth factor-beta (TGF beta) is a physiologically active TGF secreted by nodular sclerosing Reed- Sternberg cells. Five monoclonal murine antibodies were prepared that distinguished Hodgkin's TGF beta from platelet-derived TGF beta using an enzyme-linked immunosorbent assay, neutralization of biologic activity, and Western blotting. These monoclonal antibodies directed at unique antigenic determinants (epitopes) of Hodgkin's TGF beta will allow further characterization of the role of Hodgkin's TGF beta in Hodgkin's disease and related entities.


2019 ◽  
Vol 119 (05) ◽  
pp. 834-843 ◽  
Author(s):  
Aaron Folsom ◽  
Weihong Tang ◽  
Saonli Basu ◽  
Jeffrey Misialek ◽  
David Couper ◽  
...  

AbstractThe kallikrein/kinin system, an intravascular biochemical pathway that includes several proteins involved in the contact activation system of coagulation, renin–angiotensin activation and inflammation, may or may not play a role in venous thromboembolism (VTE) occurrence. Within a large prospective population-based study in the United States, we conducted a nested case–cohort study to test the hypothesis that higher plasma levels of high molecular weight kininogen (HK) or prekallikrein are associated with greater VTE incidence. We related baseline enzyme-linked immunosorbent assay measures of HK and prekallikrein in 1993 to 1995 to incidence VTE of the lower extremity (n = 612) through 2015 (mean follow-up = 18 years). We found no evidence that plasma HK or prekallikrein was associated positively with incident VTE. HK, in fact, was associated inversely and significantly with VTE in most proportional hazards regression models. For example, the hazard ratio of VTE per standard deviation higher HK concentration was 0.88 (95% confidence interval = 0.81, 0.97), after adjustment for several VTE risk factors. Our findings suggest that plasma levels of these factors do not determine the risk of VTE in the general population.


Sign in / Sign up

Export Citation Format

Share Document