scholarly journals Brachyury gene copy number gain and activation of the PI3K/Akt pathway: association with upregulation of oncogenic Brachyury expression in skull base chordoma

2018 ◽  
Vol 128 (5) ◽  
pp. 1428-1437 ◽  
Author(s):  
Ryohei Otani ◽  
Akitake Mukasa ◽  
Masahiro Shin ◽  
Mayu Omata ◽  
Shunsaku Takayanagi ◽  
...  

OBJECTIVEChordoma is a slow-growing but clinically malignant tumor, and the prognosis remains poor in many cases. There is a strong impetus to develop more effective targeted molecular therapies. On this basis, the authors investigated the potential of Brachyury, a transcription factor involved in notochord development, as a candidate molecular target for the treatment of chordoma.METHODSBrachyury gene copy number and expression levels were evaluated by quantitative polymerase chain reaction in 27 chordoma samples, and the transcriptomes of Brachyury high-expression tumors (n = 4) and Brachyury low-expression tumors (n = 4) were analyzed. A chordoma cell line (U-CH2) was used to investigate the signaling pathways that regulate Brachyury expression.RESULTSAll chordoma specimens expressed Brachyury, and expression levels varied widely. Patients with higher Brachyury expression had significantly shorter progression-free survival (5 months, n = 11) than those with lower expression (13 months, n = 16) (p = 0.03). Somatic copy number gain was confirmed in 12 of 27 (44%) cases, and copy number was positively correlated with Brachyury expression (R = 0.61, p < 0.001). Expression of PI3K/Akt pathway genes was upregulated in Brachyury high-expression tumors, and suppression of PI3K signaling led to reduced Brachyury expression and inhibition of cell growth in the U-CH2 chordoma cell line.CONCLUSIONSActivation of the PI3K/Akt pathway and Brachyury copy number gain are strongly associated with Brachyury overexpression, which appears to be a key event in chordoma growth regulation. These findings suggest that targeting Brachyury and PI3K/Akt signaling may be an effective new approach for treating chordoma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raimonda Kubiliute ◽  
Indre Januskeviciene ◽  
Ruta Urbanaviciute ◽  
Kristina Daniunaite ◽  
Monika Drobniene ◽  
...  

AbstractHyperactivation of ABC transporter ABCB1 and induction of epithelial–mesenchymal transition (EMT) are the most common mechanism of acquired cancer chemoresistance. This study describes possible mechanisms, that might contribute to upregulation of ABCB1 and synergistically boost the acquisition of doxorubicin (DOX) resistance in breast cancer MX-1 cell line. DOX resistance in MX-1 cell line was induced by a stepwise increase of drug concentration or by pretreatment of cells with an ABCB1 transporter activator tetraphenylphosphonium (TPP+) followed by DOX exposure. Transcriptome analysis of derived cells was performed by human gene expression microarrays and by quantitative PCR. Genetic and epigenetic mechanisms of ABCB1 regulation were evaluated by pyrosequencing and gene copy number variation analysis. Gradual activation of canonical EMT transcription factors with later activation of ABCB1 at the transcript level was observed in DOX-only treated cells, while TPP+ exposure induced considerable activation of ABCB1 at both, mRNA and protein level. The changes in ABCB1 mRNA and protein level were related to the promoter DNA hypomethylation and the increase in gene copy number. ABCB1-active cells were highly resistant to DOX and showed morphological and molecular features of EMT. The study suggests that nongenotoxic ABCB1 inducer can possibly accelerate development of DOX resistance.


2020 ◽  
Vol 9 (3) ◽  
pp. 603-616 ◽  
Author(s):  
Tobias Raphael Overbeck ◽  
Dana Alina Cron ◽  
Katja Schmitz ◽  
Achim Rittmeyer ◽  
Wolfgang Körber ◽  
...  

2011 ◽  
Vol 10 (2) ◽  
pp. 87 ◽  
Author(s):  
Seol-Bong Yoo ◽  
Hyojin Kim ◽  
Xianhua Xu ◽  
Ping-Li Sun ◽  
Yan Jin ◽  
...  

2021 ◽  
Author(s):  
Shin Ishihara ◽  
Takeshi Iwasaki ◽  
Kenichi Kohashi ◽  
Yuichi Yamada ◽  
Yu Toda ◽  
...  

Abstract Background Undifferentiated pleomorphic sarcoma (UPS) is a sarcoma with a poor prognosis. A clinical trial, SARC028, revealed that treatment with anti-PD-1 drugs was effective against UPS. Studies have reported that UPS expresses PD-L1, sometime strongly (≥ 50%). However, the mechanism of PD-L1 expression in UPS has remained still unclear. CKLF-like MARVEL transmembrane domain containing 6 (CMTM6) was identified as a novel regulator of PD-L1 expression. The positive relationship between PD-L1 and CMTM6 has been reported in several studies. The aim of this study was to examine CMTM6 expression in UPS and evaluate the relationship between PD-L1 and CMTM6. Materials and methods Fifty-one primary UPS samples were subjected to CMTM6 and PD-L1 immunostaining. CMTM6 expression was assessed using proportion and intensity scores. CMTM6 gene copy number was also evaluated using a real-time PCR-based copy number assay. We also analyzed the mRNA expression and copy number variation of PD-L1 and CMTM6 in The Cancer Genome Atlas (TCGA) data. Results TCGA data indicated that the mRNAs encoded by genes located around 3p22 were coexpressed with CMTM6 mRNA in UPS. Both proportion and intensity scores of CMTM6 positively correlated with strong PD-L1 expression (≥ 50%) (both p = 0.023). CMTM6 copy number gain increased CMTM6 expression. Patients with UPS with a high CMTM6 intensity score had worse prognosis for overall survival. Conclusions CMTM6 expression was significantly correlated with PD-L1 expression. CMTM6 expression induced strong PD-L1 expression (≥ 50%). CMTM6 copy number gain promoted CMTM6 expression and increased PD-L1 expression in UPS.


2011 ◽  
Vol 29 (15_suppl) ◽  
pp. 10580-10580 ◽  
Author(s):  
A. Flacco ◽  
V. Ludovini ◽  
F. R. Tofanetti ◽  
F. Bianconi ◽  
G. Bellezza ◽  
...  

2017 ◽  
Vol 20 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Eun Kyung Kim ◽  
Sewha Kim

Anaplastic lymphoma kinase ( ALK) gene aberrations—such as mutations, amplifications, and copy number gains—represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.


1995 ◽  
Vol 310 (1) ◽  
pp. 299-303
Author(s):  
J Wahlfors ◽  
S Myöhänen ◽  
V P Korhonen ◽  
L Alhonen ◽  
J Jänne

(1) Human myeloma cell line Sultan, resistant to 20 mM difluoro-methylornithine (DFMO) owing to ornithine decarboxylase (ODC) gene amplification, was grown in the absence of DFMO for a period of 10 months. The gene copy number and methylation status of the ODC gene were monitored after withdrawal of DFMO. Moreover, levels of ODC mRNA, immunoreactive ODC protein, ODC activity and polyamine levels were recorded recurrently during the course of the study. (2) The results revealed that ODC gene copy number started to decrease after 4 weeks growth without DFMO, to a final level of less than 30% of the original gene dosage. The methylation status of the ODC gene, however, remained almost unaltered, displaying only a modest increase in methylation after 10 months without DFMO. The amount of ODC message dropped very rapidly to 75% of the original value, then started to decrease in a gene copy-number-dependent manner. The amount of ODC protein closely followed the levels of mRNA during the study, whereas the ODC activity, after a transient increase during the first week, decreased to half of the original level after 4 weeks. Between 6 and 16 weeks ODC activity stabilized to a fifth of the original value and no more changes were detected during the subsequent period of observation. (3) Due to the grossly elevated ODC enzyme activity, levels of putrescine and spermidine first peaked and then stabilized at 6 weeks after DFMO withdrawal. The final spermidine level was comparable with that of the parental Sultan cell line with only one copy of active ODC gene. However, putrescine content was strikingly elevated, being stabilized to a level that was 20 times higher than in parental cells. Spermine concentration was practically unchanged during the study. (4) According to the results obtained in this study, the abnormal level of ODC expression in human myeloma cells is suppressed partially at the level of transcription or post-transcriptionally, but it is not due to increased methylation of the gene. The major regulatory mechanism to compensate for a highly elevated ODC expression was modulation of the enzyme activity. After 10 months without DFMO, the cells still displayed about 20 times higher ODC activity and putrescine concentration than the myeloma cell line with a single copy of the ODC gene. They did not, however, show any signs of growth retardation or other features different from the parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document