scholarly journals Bone morphogenetic proteins: basic concepts

2002 ◽  
Vol 13 (6) ◽  
pp. 1-6 ◽  
Author(s):  
Setti S. Rengachary

The cellular and molecular events governing bone formation in the embryo, healing of a fractured bone, and induced bone fusion follow a similar pattern. Discovery, purification, and recombinant synthesis of bone morphogenetic proteins (BMPs) constiute a major milestone in the understanding of bone physiology. In this review the author discusses the mechanism of action, clinical applications, dosage, and optimum carriers for BMPs. The roles played by other growth factors are also discussed.

2020 ◽  
Vol 21 (20) ◽  
pp. 7597
Author(s):  
Jessica Jann ◽  
Suzanne Gascon ◽  
Sophie Roux ◽  
Nathalie Faucheux

The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors—in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins—not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.


2000 ◽  
Vol 11 (4) ◽  
pp. 409-422 ◽  
Author(s):  
Thomas L. McCarthy ◽  
Changhua Ji ◽  
Michael Centrella

Research performed during the last several years implicates important roles for a variety of growth factors that affect osteoblasts or their precursors during bone development, remodeling, or repair. Of these, three families of growth factors in particular-the transforming growth factor betas (TGF-βs), insulin-like growth factors (IGFs), and bone morphogenetic proteins (BMPs)-are considered to be principal local regulators of osteogenesis, although none is specific for cells of the osteoblast lineage. Therefore, mechanisms to induce skeletal tissue specificity might occur through interactions among these growth factors, with circulating hormones, or through specific intracellular mediators. In the latter case, even more recent studies point to two nuclear transcription factors, termed Core Binding Factor al (CBFal) and CCAAT/Enhancer Binding Protein 8 (C/EBP8), as significant regulators of the expression or activity of specific bone growth factors or their receptors. Perhaps more importantly, events that link these growth factors to nuclear proteins occur in response to glucocorticoids, sex steroids, parathyroid hormone (PTH), or prostaglandin E2 (PGE2), which themselves have well-known effects on bone biology. in this review, we discuss the situations and processes that initially suggested growth-factor- and hormone-specific interactions on cells within the osteoblast lineage, and present evidence for roles that CBFa I and C/EBP8 have on osteoblast function. Finally, we offer examples for how these factors integrate events that are associated with various aspects of bone formation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


2021 ◽  
Vol 9 (3) ◽  
pp. 24
Author(s):  
Brian Heubel ◽  
Anja Nohe

The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.


2021 ◽  
pp. 153537022110281
Author(s):  
Yu Hou ◽  
Yu-Xi He ◽  
Jia-Hao Zhang ◽  
Shu-Rong Wang ◽  
Yan Zhang

Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3513
Author(s):  
Nikola Stokovic ◽  
Natalia Ivanjko ◽  
Drazen Maticic ◽  
Frank P. Luyten ◽  
Slobodan Vukicevic

Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.


Sign in / Sign up

Export Citation Format

Share Document