scholarly journals CIRCULATING HEMATOPOIETIC PROGENITOR CELLS IN PATIENTS AFFECTED BY CHORNOBYL ACCIDENT

2016 ◽  
Vol 38 (4) ◽  
pp. 242-244 ◽  
Author(s):  
N M Bilko ◽  
I S Dyagil ◽  
I S Russu ◽  
D I Bilko

High radiation sensitivity of stem cells and their ability to accumulate sublethal radiation damage provides the basis for investigation of hematopoietic progenitors using in vivo culture methodology. Unique samples of peripheral blood and bone marrow were derived from the patients affected by Chornobyl accident during liquidation campaign. Aim: To investigate functional activity of circulating hematopoietic progenitor cells from peripheral blood and bone marrow of cleanup workers in early and remote periods after the accident at Chornobyl nuclear power plant (CNPP). Materials and Methods: The assessment of the functional activity of circulating hematopoietic progenitor cells was performed in samples of peripheral blood and bone marrow of 46 cleanup workers, who were treated in the National Scientific Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine alongside with 35 non radiated patients, who served as a control. Work was performed by culturing peripheral blood and bone marrow mononuclear cells in the original gel diffusion capsules, implanted into the peritoneal cavity of CBA mice. Results: It was shown that hematopoietic progenitor cells could be identified in the peripheral blood of liquidators of CNPP accident. At the same time the number of functionally active progenitor cells of the bone marrow was significantly decreased and during the next 10 years after the accident, counts of circulating progenitor cells in the peripheral blood as well as functionally active hematopoietic cells in bone marrow returned to normal levels. Conclusion: It was shown that hematopoietic progenitor cells are detected not only in the bone marrow but also in the peripheral blood of liquidators as a consequence of radiation exposure associated with CNPP accident. This article is a part of a Special Issue entitled “The Chornobyl Nuclear Accident: Thirty Years After”.

Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3237-3244 ◽  
Author(s):  
CW Turner ◽  
AM Yeager ◽  
EK Waller ◽  
JR Wingard ◽  
WH Fleming

Human hematopoietic progenitor cells (HPCs) from mobilized peripheral blood mononuclear cells (PBMCs), adult bone marrow (ABM), and fetal bone marrow (FBM) were evaluated for their ability to produce multilineage human hematopoietic engraftment in vivo. Sublethally irradiated BNX (beige/nude/xid) mice were injected with either unfractionated cells or CD34+ cells purified from these sources. The presence of human cells in the mouse PB, BM, and spleen was evaluated by flow cytometry at either 6 to 8 weeks or 6 months postinjection. Recipients with > or = 1% human cells in any of these tissues were considered chimeric. Of 26 mice injected with FBM, 4 showed up to 73% human cells in the BM or spleen at 6 months. The phenotypes of these cells included CD13/33+ myelomonocytic cells (38%), CD19+ B cells (67%), and CD34+ progenitor cells (28%). In contrast, ABM gave rise to a mean of 5% human cells in the PB in 2 of 42 (4%) recipients at 6 to 8 weeks. These circulating human cells were predominantly CD3+, whereas CD13/33+ and CD34+ cells were detected in the BM for up to 6 months. A total of 18% of mice injected with PBMCs showed a mean of 36% human cells in the PB. Both the BM and spleens of PBMC-injected mice contained CD3+ cells in a proportion similar to that observed in the PB. These CD3+ cells were phenotypically mature CD4+,CD8-or CD4-,CD8+ T cells and coexpressed a variety of Vbeta T-cell receptor (TCR) genes. The percentage of CD3+ cells in the circulation of chimeric recipients injected with either FBM, ABM, or PBMCs correlated well with the input CD3+ cell dose for each of these HPC sources (r = .99). The high levels of engraftment of CD3+ cells in recipients of PBMCs and the long-term multilineage engraftment of FBM recipients have important implications for developing strategies to study the regulation of these human cells in vivo.


Author(s):  
A. M. Goltsev ◽  
T. G. Dubrava ◽  
Yu. O. Gaevska ◽  
N. M. Babenko ◽  
M. O. Bondarovych ◽  
...  

Background. Previously, the antitumor activity of nanocomplexes (NCs) containing nanoparticles of rare earth metal orthovanadates GdYEuVO4 and cholesterol has been approved when applied in 9:1 ratio (the cells-to-NCs), which can be considered as a conditionally therapeutic dose. Therefore, studying the potential risks of NCs exposure in terms of functional activity of hematopoietic progenitor cells is relevant. Рurpose – determining a toxic effect of NCs on functional activity of hematopoietic cells of bone marrow (BM). Materials and Methods. The study was performed in BM cells of CBA/H mice. Nanocomplexes were synthesized at Institute for Scintillation Materials of the National Academy of Sciences of Ukraine. BM cells with NCs were incubated in the ratios as follows: 9BM:1NCs; 1BM:1NCs; 1BM:9NCs, followed by assessing the number of apoptotic/necrotic cells in BM using FITC Annexin V Apoptosis Detection Kit I (BD, USA) by means of “FACS Calibur” flow cytometer (“BD”, USA). Hematopoietic progenitor cells of BM were functionally evaluated in vivo by determining the content of colony-forming units of the spleen (CFUs) and the number of myelokaryocytes in lethally irradiated recipients on day 8 after administering BM cells, pre-incubated with NCs. Survival of irradiated recipient mice after BM administration was recorded 12 days long. Results and discussion. The dose-dependent effect of functional potential in- hibition for BM hematopoietic progenitor cells under NCs influence has been established. Although, in vitro processing the BM cells with a conditionally therapeutic dose of NCs (9BM:1NCs) before administration to irradiated animal caused remodeling of cell membranes and contributed to apoptotic manifes- tations, but it did not lead to strong changes in their colony-forming potential and did not reduce the number of BM cells in animals if compared with the introduced BM cells without NCs treatment. Increasing the NCs concentration five- and tenfold significantly reduced the colony-forming potential of BM cells, caused BM hypoplasia and a crucial reduction in the survival of recipient animals, indicating possible toxic effects of this compound when administered at high concentrations. Conclusions. The toxic effect of NCs is detected only when certain concen- trations, significantly exceeding the conditionally therapeutic dose previously determined when treating the experimental oncology diseases, are used.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P<0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1206-1206 ◽  
Author(s):  
Heather A. O'Leary ◽  
Charlie Mantel ◽  
Xianyin Lai ◽  
Scott Cooper ◽  
Giao Hangoc ◽  
...  

Abstract DPP4 (CD26) is a dipeptidyl peptidase that functions by enzymatically cleaving the penultimate proline, alanine or select other amino acids such as serine of proteins, resulting in functional alterations of the protein. We recently published that many cytokines, chemokines and growth factors have putative DPP4 truncations sites and that DPP4 specifically was able to truncate some colony stimulating factors such as GM-CSF and IL-3 with resultant blunting of their activity. However, the mechanism of action of the truncated factors is still unknown and requires further investigation. The expression, and activity, of DPP4 is relevant in normal and malignant hematopoiesis as we have data showing that CD34+ umbilical cord blood cells (UCB) as well as Acute Myelogenous Leukemia (AML) patient samples express active DPP4. Further, specific inhibition of DPP4 increases homing and engraftment of both human UCB and mouse bone marrow cells after transplantation in mice indicating the therapeutic potential of DPP4 activity altering compounds. Due to its potential importance in disease states, and their subsequent treatment, it is relevant to study how the activity of DPP4 alters the functions of the molecules it cleaves, and subsequently their interactions with each other. DPP4 can cleave the penultimate proline of GM-CSF and IL-3 resulting in truncated forms which have blunted colony stimulating factor activity for hematopoietic progenitor cells (HPC). Since GM-CSF and IL-3 receptors share a common receptor beta chain, we investigated if DPP4 truncation of GM-CSF (TGM) or IL-3 (T3) could inhibit the receptor binding and functional activity of the full length (FL) alternate compound (i.e TGM inhibition of FL3 activity or T3 inhibition of FLGM activity) in the factor dependent TF-1 cell line, UCB cells and in in vivo mouse studies. We determined using TF-1 and UCB that both T3 and TGM bound to the receptors with higher affinity than their FL forms and could blunt the receptor binding of the FLGM and FL3. Additionally, TGM and T3 decreased colony formation induced by either FLGM or FL3 in both TF-1, UCB, and primary AML patient cell samples. Strikingly, this inhibition of colony formation did not require a 1:1 ratio of the full length to truncated forms of these cytokines. Rather, approximately 4-10 fold less truncated molecules could be used to efficiently inhibit the colony formation activity of the full length form, even across molecules. In vivo injection of FL, T, or a mixture of FL/T or T/T factors into DPP4 activity knockout mice followed by colony assays showed the TGM and T3 suppresed the effect of FLGM or FL3 on progenitor cell numbers per femur and diminished cycling of hematopoietic progenitor cells as detected by high specificity tritiated thymidine kill assay. Proteomic analysis of the effects of full length and truncated factors (FLGM, FL3, TGM, T3) were performed with TF-1 cells where we detected differential protein regulation by the full length vs truncated factors. After 24 hour treatment with 10ng/ml of FLGM or TGM, TF-1 cells displayed statistically significant (p < .05) differences in 26 proteins of which 17 were higher in the FL vs the T, and 9 higher in the T vs FL treated groups. These proteins included, but were not limited to, cell cycle proteins such as CDK6, HDAC6, as well as signal transduction proteins and redox control proteins such as STAM1 and Glutaredoxin. Additionally, alterations in protein phosphphorylation were detected for TF-1 cells treated for 15 or 30 min with the full length vs truncated IL-3 and GM-CSF proteins. Interestingly, the protein expression or phosphorylation levels were not always decreased by the truncated protein compared to the full length. In some cases, the truncated molecules induced an increase in the protein expression or phosphorylation. These data suggest interesting roles for full length and truncated GM-CSF and IL-3 in both normal and malignant hematopoiesis. Further investigation into the regulation of DPP4, and the roles that full length and truncated factors play during normal and malignant hematopoiesis, are important and will allow for a better understanding of the signficance of DPP4 activity during steady state, stressed, and disease hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Johannes F.M. Pruijt ◽  
Yvette van Kooyk ◽  
Carl G. Figdor ◽  
Roel Willemze ◽  
Willem E. Fibbe

Recently, we have demonstrated that antibodies that block the function of the β2-integrin leukocyte function-associated antigen-1 (LFA-1) completely abrogate the rapid mobilization of hematopoietic progenitor cells (HPC) with colony-forming and radioprotective capacity induced by interleukin-8 (IL-8) in mice. These findings suggested a direct inhibitory effect of these antibodies on LFA-1–mediated transmigration of stem cells through the bone marrow endothelium. Therefore, we studied the expression and functional role of LFA-1 on murine HPC in vitro and in vivo. In steady state bone marrow ± 50% of the mononuclear cells (MNC) were LFA-1neg. Cultures of sorted cells, supplemented with granulocyte colony-stimulating factor (G-CSF)/granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-1/IL-3/IL-6/stem cell factor (SCF) and erythropoietin (EPO) indicated that the LFA-1neg fraction contained the majority of the colony-forming cells (CFCs) (LFA-1neg 183 ± 62/7,500 cells v LFA-1pos 29 ± 17/7,500 cells,P < .001). We found that the radioprotective capacity resided almost exclusively in the LFA-1neg cell fraction, the radioprotection rate after transplantation of 103, 3 × 103, 104, and 3 × 104 cells being 63%, 90%, 100%, and 100% respectively. Hardly any radioprotection was obtained from LFA-1pos cells. Similarly, in cytokine (IL-8 and G-CSF)–mobilized blood, the LFA-1neg fraction, which comprised 5% to 10% of the MNC, contained the majority of the colony-forming cells, as well as almost all cells with radioprotective capacity. Subsequently, primitive bone marrow-derived HPC, represented by Wheat-germ-agglutinin (WGA)+/Lineage (Lin)−/Rhodamine (Rho)− sorted cells, were examined. More than 95% of the Rho− cells were LFA-1neg. Cultures of sorted cells showed that the LFA-1neg fraction contained all CFU. Transplantation of 150 Rho− LFA-1neg or up to 600 Rho−LFA-1pos cells protected 100% and 0% of lethally irradiated recipient mice, respectively. These results show that primitive murine HPC in steady-state bone marrow and of cytokine-mobilized blood do not express LFA-1.


1991 ◽  
Vol 9 (3) ◽  
pp. 478-490 ◽  
Author(s):  
D A Scheinberg ◽  
D Lovett ◽  
C R Divgi ◽  
M C Graham ◽  
E Berman ◽  
...  

Ten patients with myeloid leukemias were treated in a phase I trial with escalating doses of mouse monoclonal antibody (mAb) M195, reactive with CD33, a glycoprotein found on myeloid leukemia blasts and early hematopoietic progenitor cells but not on normal stem cells. M195 was trace-labeled with iodine-131 (131I) to allow detailed pharmacokinetic and dosimetric studies by serial sampling of blood and bone marrow and whole-body gamma-camera imaging. Total doses up to 76 mg were administered safely without immediate adverse effects. Absorption of M195 onto targets in vivo was demonstrated by biopsy, pharmacology, flow cytometry, and imaging; saturation of available sites occurred at doses greater than or equal to 5 mg/m2. The entire bone marrow was specifically and clearly imaged beginning within hours after injection; optimal imaging occurred at the lowest dose. Bone marrow biopsies demonstrated significant dose-related uptake of M195 as early as 1 hour after infusion in all patients, with the majority of the dose found in the marrow. Tumor regressions were not observed. An estimated 0.33 to 1.0 rad/mCi 131I was delivered to the whole body, 1.1 to 6.1 rad/mCi was delivered to the plasma, and up to 34 rad/mCi was delivered to the red marrow compartment. 131I-M195 was rapidly modulated, with a majority of the bound immunoglobulin G (IgG) being internalized into target cells in vivo. These data indicate that whole bone marrow ablative doses of 131I-M195 can be expected. The rapid, specific, and quantitative delivery to the bone marrow and the efficient internalization of M195 into target cells in vivo also suggest that the delivery of other isotopes such as auger or alpha emitters, toxins, or other biologically important molecules into either leukemia cells or normal hematopoietic progenitor cells may be feasible.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1395-1395
Author(s):  
Feng Xu ◽  
Qingde Wang ◽  
Hongmei Shen ◽  
Hui Yu ◽  
Yanxin Li ◽  
...  

Abstract Adenosine Deaminases Acting on RNA (ADAR) are RNA-editing enzymes converting adenosine residues into inosine (A-to-I) in many double-stranded RNA substrates including coding and non-coding sequences as well as microRNAs. Disruption of the ADAR1 gene in mice results in fetal liver, but not yolk sac, defective erythropoiesis and death at E11.5 (Wang Q et al, Science 2000). Subsequently, a conditional knockout mouse model confirmed these findings and showed massively increased cell death in the affected organs (Wang Q et al, JBC 2004). However, the actual impact of ADAR1 absence on definitive or adult hematopoiesis has not been examined. To define the role of ADAR1 in adult hematopoiesis, we first examined the expression of ADAR1 in different hematopoietic stem/progenitor cell subsets isolated from bone marrow by real-time RT-PCR. ARAR1 was present in hematopoietic stem cells (HSCs) at relatively low level and increased in hematopoietic progenitor cells (HPCs). A series of functional hematopoietic assays were then undertaken. A conditional deletion of ADAR1 was achieved by transducing Lin− or Lin−cKit+ bone marrow cells from ADAR1-lox/lox mice with a MSCV retroviral vector co-expressing Cre and GFP. PCR analysis confirmed the complete deletion of ADAR1 in the transduced cells within 72 hours after the transduction. This system allowed us to evaluate the acute effect of ADAR1 deletion in a specific hematopoietic cell population. Following 4 days of in vitro culture after transduction, the absolute number of Lin− Sca1+ cells in the Cre transduced group was similar to the input number; however the differentiating Lin+ cells significantly decreased whereas both the Lin−Sca1+ and Lin+ cells in the vector (MSCV carrying GFP alone) transduced group increased during culture. Moreover, the colony forming cell (CFC) assay showed much fewer and smaller colonies that contained dead cells from the gene deleted group as compared to those from the control group (p&lt;0.001). The TUNEL assay showed a dramatic increase of apoptosis in the Lin+ population but not in the Lin− cells. Given the mixed genetic background of the ADAR1-lox/lox mice, repopulation of the transduced hematopoietic cells in vivo was examined in immunodeficient mice. Sublethally irradiated (3.5 Gy) NOD/SCID-γcnull recipient were transplanted with either 1.5 × 105 Cre or vector transduced Lin− ADAR1-lox/lox cells. Multi-lineage engraftment in peripheral blood was monitored monthly. While the vector transduced cells were able to constitute more than 90% in multiple lineages of the peripheral blood at 1 to 3 months, Cre-transduced cells were virtually undetectable at all the time points (n=9 to 13, p&lt;0.001). A similar result was found in the hematopoietic organs, including the bone marrow, spleen and thymus. Interestingly, however, the Lin−Sca1+cKit+ cell population was preserved in the Cre transduced group despite the very low level of total donor-derived cells in the bone marrow (n=6 to 7, p&lt;0.01). Consistently, the single cell culture experiment demonstrated that there was no significant difference between ADAR−/− and wild-type HSCs in terms of survival and division during the first 3 days of culture. Taken together, our current study demonstrates nearly absolute requirement of ADAR1 for hematopoietic repopulation in adult mice and it is also suggested that ADAR1 has a preferential effect on the survival of differentiating progenitor cells over more primitive cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3847-3847
Author(s):  
Vladan P Cokic ◽  
Dragana Markovic ◽  
Olivera Mitrovic ◽  
Sanja Vignjevic ◽  
Dragoslava Djikic ◽  
...  

Abstract Abstract 3847 The microvessel density of bone marrow is increased in myeloproliferative neoplasms (MPN) parallel with vascular endothelial growth factor (VEGF). VEGF-mediated angiogenesis requires nitric oxide (NO) production from activated endothelial NO synthase (eNOS). NO as well as hypoxia stimulate the VEGF gene expression and angiogenesis by enhancing hypoxia inducible factor (HIF)-1 activity. We studied 126 newly diagnosed patients with BCR-ABL− MPN: 64 polycythemia vera (PV), 36 essential thrombocythemia (ET), 26 primary myelofibrosis (PMF) and 12 healthy individuals. We performed a combined analysis of hematopoietic CD34+ progenitor cells and granulocytes in peripheral blood of these individuals. The eNOS protein level is more than three-fold elevated in granulocytes of JAK2V617F homozygous PV patients. The essential inducer of angiogenesis VEGF-A has also about three-fold elevation at the protein level in granulocytes of PV patients, with major increases in JAK2V617F homozygous forms. Immunohistochemical analysis reveal that the percentage of VEGF-A-positive cells is increased in bone marrow of PV (5.58±0.7%) compared to normal controls (2.78±0.7%) and VEGF-A mRNA levels are increased in hematopoietic progenitor cells of PV origin. Transcription factor HIF-1α gene expression is decreased in hematopoietic progenitor cells and increased in granulocytes of PV patients. Negative regulator of HIF-1α activity, a transcription factor HIF-3α, has decreased expression in hematopoietic progenitor cells and not changed in granulocytes. In contrast to PV patients, PMF and ET disorders with a minor JAK2 mutation burden demonstrate reduced eNOS and VEGF protein levels and decreased HIF-1a gene expression in peripheral blood granulocytes, although the increase in percentage of VEGF-A-positive cells in bone marrow observed in PV patients is also evident. The present results expand the significance of JAK2V617F mutation in induction of angiogenic factors eNOS and VEGF in granulocytes of PV patients with enhanced HIF-1α presence. Moreover, the stromal and hematopoietic cells also show increased VEGF protein expression in bone marrow of PV patients. Therefore, we find that variations in angiogenic factors expression among MPN patients appear to be related to JAK2V617F mutation allele burden. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document