scholarly journals UAV, Digital Processing and Vectorization Techniques Applied to Building Condition Assessment and Follow-up

2020 ◽  
Vol 14 (4) ◽  
pp. 507-513
Author(s):  
Carles Serrat ◽  
Sebastian Banaszek ◽  
Anna Cellmer ◽  
Vicenç Gilbert ◽  
Anna Banaszek

The aim of the paper is to explain the basic principles of carrying out an inventory and follow-up of buildings and their condition assessment, by using the Full Interactive Visualization Method for Building Condition Assessment platform. It is a platform enabling the implementation of construction inventory based on the remote cooperation of many specialists in the field of, among others: building construction, architecture, civil engineering, photogrammetry, CAD, UAV. This type of cooperation is of particular importance especially in the context of the current epidemiological situation related to COVID-19. The idea of the presented platform fits into the broadly understanding of Building Information Modeling. After introducing the methodology, stages of the inventory and follow-up process carried out within the platform are illustrated and discussed on the basis of a case study. Based on the obtained results it can be concluded that the proposed methodology creates a convenient, efficient and inexpensive tool for massive inspection of building resources in large areas. The inventory is based primarily on high-quality photo and video material obtained from the deck of an unmanned aerial vehicle and the expert knowledge of the inspector conducting the inspection. By combining digital images data (photos, 3D model, orthophotos) with substantive data (facade element classification tables, wear / defect classification tables), we get a platform that allows intuitive access to viewing, classification, editing and analysis of selected data.

2015 ◽  
Vol 75 (9) ◽  
Author(s):  
Adi Irfan Che Ani ◽  
Suhana Johar ◽  
Norngainy Mohd Tawil ◽  
Mohd Zulhanif Abd Razak ◽  
Noraini Hamzah

Building information modeling (BIM) is a technology that should be integrated in the architecture, engineering, and construction industry because of its positive effects. BIM-based building condition assessment (BCA) is an emerging method that should be explored and practiced to obtain the benefits of BIM in building management and maintenance process. The purpose of this paper is to explore the BIM-based condition assessment method by conducting a survey on the water ponding defect on a flat roof. The survey was conducted by a visual inspection and pictorial. A written report was produced after the survey. A 3D BIM model was generated by using Revit Architecture. This model was then integrated with Tekla BIMsight to produce a 4D model that consists of a 3D building view and building information. General building inspection was conducted to determine the existing condition of the flat roof and any possibility of the water ponding defect. Results show that water ponding occurs on flat roof areas during and after heavy rainfall because water does not efficiently flow through the rainwater downpipes (RWDPs). This obstruction in water flow is caused by the presence of dirt and the insufficient number of RWDPs in certain areas. Furthermore, BIM-based BCA shows a positive effect by providing a 4D model that is easy to understand, access, and store by the building management team.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Vachara Peansupap ◽  
Pisal Nov ◽  
Tanit Tongthong

The kingpost was a vertical element that was used to support the structural strut in the deep excavation. The structural kingpost was commonly arranged by experienced engineers who used two-dimensional construction drawings. Thus, it was still time-consuming and error-prone. Currently, an available construction program has been developed to arrange the structural kingpost by identifying the clash problems in the 3D environment. However, they have a limitation for detecting the clash that was unable to visualize the concurrent clashes between kingpost and many underground structures. Then, the engineer cannot see all the clash incidents with each kingpost and move the kingpost to avoid the clashes successfully. Since the kingpost arrangement was still an inefficient practice that was limited in the visualization aspect, this research used engineering knowledge and advanced construction technology to detect and solve the clashes between kingposts and underground structures. The methodology used engineering knowledge of kingpost arrangement to develop the system modules by using a rule-based approach. Then, these modules were developed into the system by using visual programming of Building Information Modelling (BIM). To test the system, an underground structure from building construction was selected as a case study to apply the developed system. Finally, the finding of this study could overcome human judgment by providing less interaction in the kingpost arrangement and visualization improvement of clash occurrences in the 3D model.


Author(s):  
Kieu-Trang Pham ◽  
Duc-Nghia Vu ◽  
Phuc Le Hieu Hong ◽  
Chansik Park

Temporary safety facilities (TSFs) are an essential support system providing necessary protection to workers during construction activities, which are targeted towards preventing the occurrence of incidents and accidents at the construction site; however, the schedule and location of installation and demolition of TSFs continue to rely on labor experience, and are often omitted from formal drawings or documents. This results in thousands of accidents in the construction industry, especially in construction small and medium-sized enterprises (SMEs) because of their several limiting factors; therefore, this study proposes automatic workspace planning for TSFs based on construction activities, which is a systematized approach for construction SMEs to practice occupational health and safety (OHS). By using building information modeling (BIM) and add-in algorithm, safety facilities can be simulated and visualized to integrate into the designated workspace. The developed system was implemented utilizing 4D-BIM for TSFs installation and validated with a case study on a residential building project. The result revealed that the visualized TSF produces a better understanding of safety measures with regard to project schedule. Additionally, TSFs workspace planning provides an affordable approach that motivates safety practices among the SMEs; consequently, the effectiveness of construction safety measures and their management is enhanced appreciably.


2020 ◽  
Vol 27 (9) ◽  
pp. 2409-2427
Author(s):  
Honglei Liu ◽  
Jiule Song ◽  
Guangbin Wang

PurposeWith the increasing attention acquired from researchers and practitioners in Architecture, Engineering and Construction (AEC) industry, building information modeling (BIM) has fundamentally changed the approach we design, construct and delivery, as well as operate and maintenance of buildings and civil infrastructures. This study tries to provide an innovative perspective on BIM research. This study aims to analyze the necessity and feasibility of BIM user satisfaction research and define what BIM user satisfaction is, and then to develop a quantitative method for the measurement of BIM user satisfaction.Design/methodology/approachAs it is indicated in the content, BIM user satisfaction is measured by the sum of the user's weighted reactions to a set of factors. To be specific, the entropy method was adopted to calculate the “weighting” of the factors, and the triangular fuzzy number (TFN) method was selected to compute the “scoring” of the factors. Through the literature review, methodology and tool development, as well as case study and discussions, this paper was generated sequentially.FindingsThis study found that the proposed tool for the measurement of BIM success is valid and reliable; it formerly translated the conceptual definition of BIM user satisfaction into an accurate measurement instrument. It also indicated that many factors are affecting the BIM users' satisfaction, and each of the factors inherited various importance and score, and the findings are expected to improve the performance and effectiveness of BIM management.Originality/valueThrough the translation of the conceptual BIM user satisfaction into a valid quantitative measurement instrument, this research provides an excellent framework for the management of BIM from the user's perspective, and it could help to stimulate user's acceptance of BIM in the AEC industry in future.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


2019 ◽  
Vol 295 ◽  
pp. 02010 ◽  
Author(s):  
Rania Wehbe ◽  
Isam Shahrour

Building information modeling (BIM) is the geometric way to present a life cycle construction project including geographic information. Recently, the Internet of Things (IoT) has been progressively used smart buildings in order to enhance living comfort, work productivity and entertainment. However, studies addressing the combination of these two technologies (BIM and IoT) focused on the automatic diffusion of data through sensors to BIM models [1]. Based on American College of Occupational and Environmental Medicine (ACOEM) a great portion of our time is spend inside buildings, in our offices, homes, schools, health care facilities, or in other private or public buildings. Hence the necessity to improve the basic human right to live in a healthy, safe and comfort environment is vital. This paper presents the use of BIM to support complex decisions concerning comfort conditions in buildings. This use is illustrated through a case study concerning a building of the AUST campus in Beirut.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3128 ◽  
Author(s):  
Jinyue Zhang ◽  
Jianing Guo ◽  
Haiming Xiong ◽  
Xiangchi Liu ◽  
Daxin Zhang

Many research studies have focused on fire evacuation planning. However, because of the uncertainties in fire development, there is no perfect solution. This research proposes a fire evacuation management framework which takes advantage of an information-rich building information modeling (BIM) model and a Bluetooth low energy (BLE)-based indoor real-time location system (RTLS) to dynamically push personalized evacuation route recommendations and turn-by-turn guidance to the smartphone of a building occupant. The risk score (RS) for each possible route is evaluated as a weighted summation of risk level index values of all risk factors for all segments along the route, and the route with the lowest RS is recommended to the evacuee. The system will automatically re-evaluate all routes every 2 s based on the most updated information, and the evacuee will be notified if a new and safer route becomes available. A case study with two testing scenarios was conducted for a commercial office building in Tianjin, China, in order to verify this framework.


Sign in / Sign up

Export Citation Format

Share Document