A method for preparing extensible paper on the laboratory scale

2014 ◽  
Vol 29 (2) ◽  
pp. 317-321 ◽  
Author(s):  
Jussi Lahti ◽  
Franz Schmied ◽  
Wolfgang Bauer

Abstract Extensibility is an important property for papers undergoing large deformations in converting or end use application (e.g. industrial bags). Industrially, high extensibility is created by compacting the moist paper web in machine direction (MD) using an extensible unit such as the Clupak or Expanda methods. In this study, a method was developed to produce extensible paper on the laboratory scale. The Clupak unit was simulated using a purpose-built MD compaction apparatus. A paper sheet is placed between two stretched rubbers which are recoiled under perpendicular pressure to create sufficient friction between paper and rubber. The laboratory method for producing extensible paper sufficiently corresponds to the industrial process, i.e. strain increased while tensile stiffness index and tensile index decreased. Increased solids content during rubber recoiling enhanced the sigmoidal shape of the specific stress versus strain curves whereas tensile index remained unchanged. The reproducibility of the method is at a good level and thus the developed method offers a feasible way to study the production of extensible paper on the laboratory scale.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan-Erik Berg ◽  
Börje Hellstadius ◽  
Mikael Lundfors ◽  
Per Engstrand

AbstractChemithermomechanical pulp (CTMP) is often used in central layers of multiply paperboards due to its high bulk and strength. Such a CTMP should consist of well-separated undamaged fibres with sufficient bonding capacity. The basic objective of this work is to optimize process conditions in low-consistency (LC) refining, i. e. to select or ultimately develop new optimal LC refiner filling patterns, in order to produce fibrillar fines and improve the separation of fibres from each other while preserving the natural fibre morphology as much as possible. Furthermore, the aim is to evaluate if this type of work can be done at laboratory-scale or if it is necessary to run trials in pilot- or mill-scale in order to get relevant answers. First stage CTMP made from Norway spruce (Picea abies) was LC refined in mill-, pilot- and laboratory-scale trials and with different filling patterns. The results show that an LR1 laboratory refiner can favourably be used instead of larger refiners in order to characterize CTMP with regard to tensile index and z-strength versus bulk. A fine filling pattern resulted in CTMP with higher tensile index, z-strength and energy efficiency at maintained bulk compared to a standard filling pattern.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6700
Author(s):  
Jolanta Gawałek

Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.


2017 ◽  
Vol 13 ◽  
pp. 960-987 ◽  
Author(s):  
Chinmay A Shukla ◽  
Amol A Kulkarni

The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature.


2021 ◽  
Vol 63 (3) ◽  
pp. 55-59
Author(s):  
Van Son Cao ◽  
◽  
Thi Quynh Hoa Le ◽  
Thi Thu Nguyet Do ◽  
Thanh Tu Do ◽  
...  

This paper presents the research results that established the main technological conditions in the production of greaseproof paper, used as the packaging of dry food as the proportion of pulp types, the degree of the beating of pulp, the use of chemicals and oil and greaseproof resistant agent to the properties of the paper on a laboratory scale. At the same time, experimental production and technology conditions were regulated on a 3 ton/day capacity line. The paper quality produced is equivalent to the imported paper products of the same type which is consumed in the market: basis weight: 42.5 g/m2; tensile breaking length: MD (Machine Direction): 7,520 m, CD (Cross Direction): 3,740 m; tear index: MD: 6.8 mN.m2/g, CD: 5.4 mN.m2/g; burst index: 5.6 kPa.m2/g; Cobb60: 17.2 g/m2; KIT rating: 8; ensuring food safety and hygiene.


2017 ◽  
Vol 1 ◽  
pp. 12 ◽  
Author(s):  
Ato Fanyin-Martin ◽  
Wilson Tamakloe ◽  
Edward Antwi ◽  
Johannes Ami ◽  
Emmanuel Awarikabey ◽  
...  

Background: Faecal sludge (FS) represents a huge resource, which when tapped and made use properly can be of great benefit to many. However, the key to tapping this resource lies in proper characterisation, in order to make known the constituents and thereby determine the end-use. Methods: Three sources of FS from 43 communities in the Kumasi metropolis of Ghana were characterised in terms of their total solids content, chemical oxygen demand (COD), pH, nitrogen, phosphorous and lipid contents. FS from pit latrines, public septage and private septage were analysed. Results: On average, lipid content was found to be in the range of 8.82 – 9.66% of dry FS depending on the source of FS. Total solids were between 0.79 and 4.68%, while the COD was between 9495 and 45611mg/L. Phosphorus content was in the range of 137 – 520mg/L, while nitrogen was 649 – 4479mg/L. Most FS samples were generally alkaline in nature. Conclusions: These results are amongst the first long-term characterization efforts for FS in terms of conventional and non-conventional characteristics, tailored towards typical treatment and novel resource recovery options, respectively.


Author(s):  
Nesrin Ozalp

Manufacturing energy flows are characterized by two types of models: an energy process-step model and an energy end-use model. This paper provides a methodology for developing energy process-step models using federal database. Since energy end-use model provides the basis to scale energy process-step model, first, the concept of an energy end-use model is briefly described. Then, a concise methodology to construct the key part of the energy end-use model is given, namely, on-site steam and power generation model. Finally, a thorough methodology to develop energy process-step model showing energy inputs at each step of an industrial process is described by providing reconciliation with the energy end-use model results. An example methodology is provided for nitrogen, oxygen and argon production energy process-step models. Our approach to creating these models has been shown to be applicable to other energy intensive manufacturing industries. When used in conjunction with similar models for other years, these models can be used to identify the changes and trends in energy use.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 928 ◽  
Author(s):  
Flavio Tidona ◽  
Salvatore Francolino ◽  
Roberta Ghiglietti ◽  
Francesco Locci ◽  
Gianluca Brusa ◽  
...  

This work evaluated the effect of recombined skimmed milk (RM), mixed in different ratios (40, 60, and 100%) with fresh cow milk, on the processing technology and quality of Crescenza, an industrial soft cheese of the Italian dairy tradition. Crescenza-type cheeses were produced at a laboratory scale, following the industrial process. Control cheese consisted of Crescenza-type cheese produced with 100% whole fresh milk. Compared to control cheese, the substitution of fresh milk with 60–100% of RM deteriorated the coagulation properties and led to a higher moisture retention, whereas, with 40% of RM, the differences were not statistically significant. Cheeses produced with any concentration of RM, although of acceptable quality, differed significantly in terms of sensory properties from control cheese. The addition of colloidal calcium phosphate, or CaCl2 together with a reduction in the size of the curd at cutting, minimized the differences in composition and sensory properties between cheeses produced with 40% RM and control cheese. This study suggested the applicability of 40% RM to obtain Crescenza-type cheese with suitable quality characteristics. The type of product, the technology, the quality, and quantity of the powders are all key factors to be taken into account for a successful application.


Sign in / Sign up

Export Citation Format

Share Document