Long Term Intake Of High Protein Diet Reduces Body Weight And Glucagon Like Peptide-1 (Glp-1) Concentration In Male Wistar Rats

2016 ◽  
Vol 311 (4) ◽  
pp. R771-R778 ◽  
Author(s):  
Magdalena Stepien ◽  
Dalila Azzout-Marniche ◽  
Patrick C. Even ◽  
Nadezda Khodorova ◽  
Gilles Fromentin ◽  
...  

We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.


2013 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Rebeca Lugaresi ◽  
Marco Leme ◽  
Vítor de Salles Painelli ◽  
Igor Murai ◽  
Hamilton Roschel ◽  
...  

2020 ◽  
Vol 20 (07) ◽  
pp. 16984-16996
Author(s):  
MMC Anyakudo ◽  
◽  
DO Adeniji ◽  

The metabolic response to nutrient ingestion and the rate of digestion and absorption of nutrient molecules in bowel physiology plays an important role in the metabolic control of some human chronic non-infectious diseases. This experimentally-controlled designed nutritional study which lasted eight weeks aimed to determine the effects of proportional high-protein/low-carbohydrate (HP/LC) formulated diet on glycemic tolerance, glycemic control, body weight, organ weight and organ morphometry in healthy and diabetic adult male Wistar rats. Twenty-four male Wistar rats purchased from a disease-free stock were randomly categorized into four groups (n = 6, each) after two weeks acclimatization period in raised stainless steel cages with 6 mm2mesh floor and replaceable numbered blotters papers placed under each cage in a well-ventilated animal house. Animal groups include: Healthy control group (HC), Healthy treated group (HT), Diabetic control group (DC) and Diabetic treated group (DT. The animals were fed according to the experimental design with water ad libitumfor eight weeks. Diabetes was inducted with freshly prepared alloxan monohydrate solution (150 mg/kg bw, intraperitoneally). Body weights and fasting blood sugar concentrations were measured twice weekly, while oral glucose tolerance test was conducted on the last day of the eighth-week study and subsequently followed by organs extraction after anesthesia for weight and gross assessment. Proportional high-protein/low-carbohydrate formulated diet caused significant reduction in mean body weight of treated diabetic (DT: 22.6%; P= .001) and healthy (HT: 5.8%; P= .007) rats while the control animals on control diet recorded significant (P< .05) increase in body weight gain (DC: 12.4%; HC: 11.2%). Glycemic tolerance and control improved significantly in diabetic treated rats over that of the healthy treated rats. Gross morphometry of the extracted organs (kidneys, liver, heart, lungs, spleen and testes) revealed sustained normal morphological features without any visible lesion. In conclusion, consumption of proportional high-protein/low-carbohydrate formulated diet enhanced body weight reduction and sustained normal organ morphological features with good glycemic tolerance and control in experimental rats, suggesting its dietary potentiality, safety and suitability to ameliorate obesity-related diabetes.


2020 ◽  
Vol 21 (6) ◽  
pp. 2147 ◽  
Author(s):  
Fan Hong ◽  
Aijuan Zheng ◽  
Pengfei Xu ◽  
Jialin Wang ◽  
Tingting Xue ◽  
...  

Hyperuricemia is a central risk factor for gout and increases the risk for other chronic diseases, including cardiometabolic disease, kidney disease, and hypertension. Overproduction of urate is one of the main reasons for hyperuricemia, and dietary factors including seafoods, meats, and drinking are contributed to the development of it. However, the lack of a suitable animal model for urate metabolism is one of the main reasons for the delay and limitations of hyperuricemia research. Combining evolutionary biological studies and clinical studies, we conclude that chicken is a preferred animal model for hyperuricemia. Thus, we provided chickens a high-protein diet (HPD) to evaluate the changes in the serum urate levels in chickens. In our study, the HPD increased the serum urate level and maintained it at a long-term high level in chickens. Long-term high serum urate levels induced an abnormal chicken claw morphology and the precipitation of monosodium urate (MSU) in joint synovial fluid. In addition, a long-term HPD also decreased the glomerular filtration rate and induced mild renal injury. Most importantly, allopurinol and probenecid displayed the positive effects in decreasing serum urate and then attenuated hyperuricemia in chicken model. These findings provide a novel model for hyperuricemia and a new opportunity to further investigate the effects of long-term hyperuricemia on other metabolic diseases.


1982 ◽  
Vol 98 (2) ◽  
pp. 241-245 ◽  
Author(s):  
T. W. Searle ◽  
N. McC. Graham ◽  
J. B. Donnelly

SUMMARYCorriedale and Dorset Horn castrate male (wether) lambs reared at pasture were weaned at 19 kg live weight (LW), brought indoors and fed a high protein diet such that half of each group grew at ca. 200 g/day and the other half at ca. 100 g/day. Animals were slaughtered at 25 and 30 kg LW and chemical composition (protein, fat, energy, water and ash) of the body determined. The relationship between each body component and shorn empty-body weight was examined by regression analysis.Within levels of feeding the results were similar in the two breeds. When comparisons were made between feeding levels, the slower-growing animals contained more fat, energy and ash than the faster-growing group, less water, but similar amounts of protein at any given empty-body weight.


2012 ◽  
Vol 4 (1) ◽  
pp. 60 ◽  
Author(s):  
VelliyurKanniappan Gopalakrishnan ◽  
Dominic Sophia ◽  
Paramasivam Ragavendran ◽  
ChinthamonyArul Raj

Sign in / Sign up

Export Citation Format

Share Document