scholarly journals Neuroprotective action of amidic neurolipins in models of neurotoxicity on the culture of human neural-like cells SH-SY5Y

2019 ◽  
Vol 485 (5) ◽  
pp. 625-628
Author(s):  
M. G. Akimov ◽  
A. M. Ashba ◽  
E. V. Fomina-Ageeva ◽  
N. M. Gretskaya ◽  
N. F. Myasoedov ◽  
...  

It was established that in neurodegeneration models in the human neuron-like cell line SH-SY5Y, amide derivatives of arachidonic and docosahexaenoic acids were inactive in experiments with MPP+ and CoCl2 but protected from H2O2. The protective activity of neurolipins decreased in the series DHA-DA > AA-SER >= AA-GLY > AA-GABA >= AA-EA and was manifested starting from a concentration of 0.5 nM.

2013 ◽  
Vol 9 (7) ◽  
pp. 920-925 ◽  
Author(s):  
Yi Bi ◽  
Jinyi Xu ◽  
Fei Sun ◽  
Xiaoming Wu ◽  
Wencai Ye ◽  
...  

Author(s):  
Vasil Tsanov ◽  
Hristo Tsanov

Background:: This article concentrates on the processes occurring in the medium around the cancer cell and the transfer of glycoside amides through their cell membrane. They are obtained by modification of natural glycoside-nitriles (cyano-glycosides). Hydrolysis of starting materials in the blood medium and associated volume around physiologically active healthy and cancer cells, based on quantum-chemical semi-empirical methods, is considered. Objective:: Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that organisms have adapted to take food containing nitrile glycosides and / or modified forms to counteract "external" bioactive activity. Cancers, for their part, have evolved to create conditions around their cells that eliminate their active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene sets and develops according to its instructions. Methods:: Derived pedestal that closely defines the processes of hydrolysis in the blood, the transfer of a specific molecular hydrolytic form to the cancer cell membrane and with the help of time-dependent density-functional quantum- chemical methods, its passage and the processes of re-hydrolysis within the cell itself, to forms causing chemical apoptosis of the cell - independent of its non-genetic set, which seeks to counteract the process. Results:: Used in oncology it could turn a cancer from a lethal to a chronic disease (such as diabetes). The causative agent and conditions for the development of the disease are not eliminated, but the amount of cancer cells could be kept low for a long time (even a lifetime). Conclusion:: The amide derivatives of nitrile glycosides exhibit anti-cancer activity, the cancer cell probably seeks to displace hydrolysis of these derivatives in a direction that would not pass through its cell membrane and the amide- carboxyl derivatives of nitrile glycosides could deliver extremely toxic compounds within the cancer cell itself and thus block and / or permanently damage its normal physiology.


2019 ◽  
Vol 18 (10) ◽  
pp. 1417-1424 ◽  
Author(s):  
Emilia Naydenova ◽  
Diana Wesselinova ◽  
Svetlana Staykova ◽  
Ivan Goshev ◽  
Ljubomir Vezenkov

Background: Based on the structure of RC-121 (D-Phe-c (Cys-Tyr-D-Trp-Lys-Val-Cys)-Thr-NH2, - synthetic derivatives of somatostatin), some analogs were synthesized and tested for in vitro cytotoxic and antioxidant activity. Objectives: The new analogs were modifyed at position 5 with Dap (diaminopropanoic acid), Dab (diaminobutanoic acid) and Orn and at position 6 with the unnatural amino acids Tle (t-leucine). Methods: The in vitro cytotoxic effects of the substances were investigated against a panel of human tumor cell lines HT-29 (Human Colorectal Cancer Cell Line), MDA-MB-23 (Human Breast Cancer Cell Line), Hep G-2 (Human Hepatocellular Carcinoma Cell Line) and HeLa (cervical cancer cell line). The antioxidant capacities were tested by ORAC (Oxygen Radical Antioxidant Capacity) and HORAC (Hydroxyl Radical Averting Capacity) methods. Results: All substances expressed significantly higher antioxidant capacity by comparison with galic acid and Trolox. All substances showed considerable antioxidant capacity as well. Compound 2T (D-Phe-c(Cys-Tyr-DTrp- Dap-Tle-Cys)-Thr-NH2)had the highest antioxidant effect. The compound 4T (D-Phe-c(Cys-Tyr-D-Trp- Orn-Tle-Cys)-Thr-NH2) displayed antiproliferative effect on HeLa cells with IC50 30 µM. The peptide analog 3T (D-Phe-c(Cys-Tyr-D-Trp-Lys-Tle-Cys)-Thr-NH2) exerted the most pronounced inhibition on the cell vitality up to 53%, 56% and 65% resp. against MDA-MB-23, Hep G-2, HeLa in the higher tested concentration. Conclusion: The somatostatin analogs showed moderate influence on the vitality of different tumor cells and could be used in changing their pathology.


ACS Omega ◽  
2021 ◽  
Author(s):  
Qiang Shang ◽  
Xiaobo Zhou ◽  
Ming-Rong Yang ◽  
Jing-Guang Lu ◽  
Yu Pan ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 890-897 ◽  
Author(s):  
Tin Myo Thant ◽  
Nanik Siti Aminah ◽  
Alfinda Novi Kristanti ◽  
Rico Ramadhan ◽  
Hnin Thanda Aung ◽  
...  

AbstractNew derivatives were obtained from natural nordentatin (1) previously isolated from the methanol fraction of Clausena excavata by an acylation method. Herein, we report ten new pyranocoumarin derivatives 1a–1j. Their structures were elucidated based on UV-vis, FT-IR, NMR, and DART-MS data. The α-glucosidase inhibition and anticancer activities of nordentatin (1) and its derivatives were also evaluated. The α-glucosidase inhibition assay exhibited that the derivatives 1b, 1d, 1e, 1f, 1h, 1i, and 1j possess higher inhibitory activity for α-glucosidase with IC50 values of 1.54, 9.05, 4.87, 20.25, 12.34, 5.67, and 2.43 mM, whereas acarbose was used as the positive control, IC50 = 7.57 mM. All derivatives exhibited a weak cytotoxicity against a cervical cancer (HeLa) cell line with the IC50 between 0.25 and 1.25 mM. They also showed moderate to low growth inhibition of a breast cancer (T47D) cell line with IC50 values between 0.043 and 1.5 mM, but their activity was lower than that of the parent compound, nordentatin (1) (IC50 = 0.041 mM).


1984 ◽  
Vol 15 (37) ◽  
Author(s):  
V. P. PEREVALOV ◽  
M. A. ANDREEVA ◽  
YU. A. MANAEV ◽  
SH. G. ISAEV ◽  
L. I. BARYSHNENKOVA ◽  
...  

1966 ◽  
Vol 11 (2) ◽  
pp. 250-250 ◽  
Author(s):  
Robert G. Splies ◽  
Robert E. Lenya

2003 ◽  
pp. 345-387
Author(s):  
Paul J. Reier ◽  
John Q. Trojanowski ◽  
Virginia M-Y. Lee ◽  
Margaret J. Velardo

Sign in / Sign up

Export Citation Format

Share Document