Theoretical Study of the Process of Passage of Glycoside Amides through the Cell Membrane of Cancer Cell

Author(s):  
Vasil Tsanov ◽  
Hristo Tsanov

Background:: This article concentrates on the processes occurring in the medium around the cancer cell and the transfer of glycoside amides through their cell membrane. They are obtained by modification of natural glycoside-nitriles (cyano-glycosides). Hydrolysis of starting materials in the blood medium and associated volume around physiologically active healthy and cancer cells, based on quantum-chemical semi-empirical methods, is considered. Objective:: Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that organisms have adapted to take food containing nitrile glycosides and / or modified forms to counteract "external" bioactive activity. Cancers, for their part, have evolved to create conditions around their cells that eliminate their active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene sets and develops according to its instructions. Methods:: Derived pedestal that closely defines the processes of hydrolysis in the blood, the transfer of a specific molecular hydrolytic form to the cancer cell membrane and with the help of time-dependent density-functional quantum- chemical methods, its passage and the processes of re-hydrolysis within the cell itself, to forms causing chemical apoptosis of the cell - independent of its non-genetic set, which seeks to counteract the process. Results:: Used in oncology it could turn a cancer from a lethal to a chronic disease (such as diabetes). The causative agent and conditions for the development of the disease are not eliminated, but the amount of cancer cells could be kept low for a long time (even a lifetime). Conclusion:: The amide derivatives of nitrile glycosides exhibit anti-cancer activity, the cancer cell probably seeks to displace hydrolysis of these derivatives in a direction that would not pass through its cell membrane and the amide- carboxyl derivatives of nitrile glycosides could deliver extremely toxic compounds within the cancer cell itself and thus block and / or permanently damage its normal physiology.

2018 ◽  
Author(s):  
Norihiro Kotani ◽  
Arisa Yamaguchi ◽  
Tomoko Ohnishi ◽  
Ryusuke Kuwahara ◽  
Takanari Nakano ◽  
...  

ABSTRACTCancer-specific antigens expressed in the cell membrane have been used as targets for several molecular targeted strategies in recent years with remarkable success. To develop more effective cancer treatments, novel targets and strategies for targeted therapies are needed. Here, we examined the cancer cell membrane-resident “cis-bimolecular complex” as a possible cancer target (cis-bimolecular cancer target: BiCAT) using proximity proteomics, a technique that has attracted attention in recent years. BiCATs were detected using a previously developed method, termed the enzyme-mediated activation of radical source (EMARS), to label the components proximal to a given cell membrane molecule. EMARS analysis identified some BiCATs, such as close homolog of L1 (CHL1), fibroblast growth factor 3 (FGFR3) and α2 integrin, which are commonly expressed in mouse primary lung cancer cells and human lung squamous cell carcinoma cells. Analysis of cancer specimens from 55 lung cancer patients revealed that approximately half of patients were positive for these BiCATs. In vitro simulation of effective drug combinations used for multiple drug treatment strategy was performed using reagents targeted to BiCAT molecules. The combination treatment based on BiCAT information moderately suppressed cancer cell proliferation compared with single administration, suggesting that the information about BiCATs in cancer cells is profitable for the appropriate selection of the combination among molecular targeted reagents. Thus, BiCAT has the possibility to make a contribution to several molecular targeted strategies in future.


1987 ◽  
Author(s):  
H Kitagawa ◽  
N Yamamoto ◽  
G Kosaki ◽  
H Yamazaki

Platelet aggregation induced by cancer cells may be an essential process in the development of hematogenous metastasis of cancers. A mechanism in HMV-I (human vaginal melanoma cell line)-induced platelet aggregation was studied by using monoclonal antibodies against membrane proteins of cancer cells or platelets. HMV-I cells or their membrana ractions induced platelet aggregation of human heparinized PRP, to which hirudin had no inhibitory effect. The platelet aggregation by HMV-I was completely lost after the pretreatment of the cells with 0.3U/ml neuraminidase for 60 min at 37°C. Preincubation of platelets with monoclonal antibodies against platelet GP lb or GP Ilb/lIIa inhibited HMV-I induced aggregation. A monoclonal antibody MB3 (igM) against another human melanoma (HMMB) which had been transplanted in nude mice was produced by hybridoma technique. Screening studies by cell binding ELISA revealed that MB3 antibody reacted with not only HMMB cells but also many other cells including HMV-I, M7609 (colon carcinoma cell line) and normal fibroblasts. Western-blot analyses showedthat MB3 antibody reacted with multiple, more than ten, proteins with molecular weights ranging from UO to 200 kDa in unreduced SDS-PAGE of HMV-I, HMMB or M7609. In contrast, when .these cells pretreated with neuraminidase were used in Western-blot, MB3 reactivity were all lost. MB3 reacted with at least three glycoproteins of human red cell membrane in Western-blot, but it did not react with human platelets. Immune adherent asgay with trypsin-treated HMV-I or HMMB cells as target cells showed negative reactivity. MB3 antibody inhibited HMV-I-induced aggregation of platelets, but did not inhibit M7609-induced aggregation which depended on thrombin generation.These results suggest that MB3 antibody may be against sialic acid-containing carbohydrate moieties of membrane glycoproteins on these cancercells and that the carbohydrate(s) may play a critical role in' cancer cell-platelet interaction.


2021 ◽  
Vol 316 ◽  
pp. 75-80
Author(s):  
Oleg Kh. Karimov ◽  
Galina Yu. Kolchina ◽  
Eldar M. Movsumzade

In the framework of method of the B3LYP hybrid density functional and the restricted Hartree-Fock method, quantum-chemical calculations of model compounds of lignin, i.e. derivatives of p-hydroxycinnamic alcohol were carried out. The structures and reactivity of coumaric, coniferyl and synapol alcohols were studied. Quantitative characteristics of the reactivity of these acids are given. It is found that the electronic structure of lignin is determined primarily by the charge distribution in its structural phenylpropane unit. In the molecules of all model compounds of lignin, the center for nucleophilic attack is the carbon of aromatic ring (E-ring) with a hydroxyl group, and in the molecule of synapol alcohol, this center is also the carbon of the aromatic ring (E-ring) with a methoxy group. In all three compounds, a center with an increased electron density appears on the Сβ carbon atom.


2018 ◽  
Vol 73 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Tran Van Loc ◽  
Vo Thi Quynh Nhu ◽  
Tran Van Chien ◽  
Le Thi Thu Ha ◽  
Tran Thi Phuong Thao ◽  
...  

AbstractFifteen new 28-amide derivatives of madecassic acid, isolated from the tropical medicinal herb Centella asiatica (Apiaceae), have been synthesised, and their cytotoxicity on three cancer cell lines, KB (carcinoma cancer), HepG2 (liver cancer) and Lu-1 (lung cancer), was evaluated. The results showed that acetylation of the 2,3,23-hydroxyl group and/or amidation of the 28-COOH group strongly increased the cytotoxicity of the synthesised compounds.


2010 ◽  
Vol 17 (2) ◽  
pp. 431-443 ◽  
Author(s):  
Xiao-Dong Fu ◽  
Lorenzo Goglia ◽  
Angel Matias Sanchez ◽  
Marina Flamini ◽  
Maria S Giretti ◽  
...  

While progesterone plays multiple roles in the process of breast development and differentiation, its role in breast cancer is less understood. We have shown previously that progestins stimulate breast cancer cell migration and invasion because of the activation of rapid signaling cascades leading to modifications in the actin cytoskeleton and cell membrane that are required for cell movement. In this study, we have investigated the effects of progesterone on the formation of focal adhesion (FA) complexes, which provide anchoring sites for cell attachment to the extracellular matrix during cell movement and invasion. In T47-D breast cancer cells, progesterone rapidly enhances FA kinase (FAK) phosphorylation at Tyr397 in a time- and concentration-dependent manner. As a result, exposure to progesterone leads to increased formation of FA complexes within specialized cell membrane protrusions. The cascade of events required for this phenomenon involves progesterone receptor interaction with the tyrosine kinase c-Src, which activates the phosphatidylinositol-3-kinase/Akt pathway and the small GTPase RhoA/Rho-associated kinase complex. In the presence of progesterone, T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices, which is reversed by small interfering RNAs abrogating FAK. In conclusion, progesterone promotes breast cancer cell movement and invasion by facilitating the formation of FA complexes via the rapid regulation of FAK. These results provide novel mechanistic views on the effects of progesterone on breast cancer progression, and may in the future be helpful to develop new strategies for the treatment of endocrine-sensitive breast cancers.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Fang He ◽  
Du-Xin Jin ◽  
Xue-Gang Luo ◽  
Tong-Cun Zhang

Abstract Antimicrobial peptides have been attracting increasing attention for their multiple beneficial effects. In present study, a novel AMP with a molecular weight of 1875.5 Da, was identified from the genome of Lactobacillus casei HZ1. The peptide, which was named as LHH1 was comprised of 16 amino acid residues, and its α-helix content was 95.34% when dissolved in 30 mM SDS. LHH1 exhibited a broad range of antimicrobial activities against Gram-positive bacteria and fungus. It could effectively inhibit Staphylococcus aureus with a minimum inhibitory concentration of 3.5 μM and showed a low hemolytic activity. The scanning electron microscope, confocal laser scanning microscope and flow cytometry results showed that LHH1 exerted its antibacterial activity by damaging the cell membrane of Staphylococcus aureus. Meanwhile, LHH1 also exhibited anti-cancer cell activities against several cancer cells via breaking the cell membrane of MGC803, HCT116 and C666-1 cancer cells.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyuan He ◽  
Chulian Gong ◽  
Jie Qin ◽  
Mingan Li ◽  
Shaohong Huang

Abstract Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.


Author(s):  
Lemi Türker

Diaminodinitroethylene (DADNE) has three constitutional isomers; cis, trans and geminal. In the present study, epoxides of these isomers are considered within the restrictions of density functional theory at the level of UB3LYP/6-31G(d,p). Certain geometrical and quantum chemical properties of them are computed. The homolytic dissociation energy for C-NO2 bond in each case has been calculated at the level of UB3LYP/6-311++G(d,p). Based on the calculations performed, certain predictions are made for the impact sensitivities and specific impulse values of these epoxide derivatives of DADNE isomers.


Sign in / Sign up

Export Citation Format

Share Document