scholarly journals ANALISIS PENGARUH PENAMBAHAN IJUK 0,25% DAN 0,5% PADA CAMPURAN BETON fc’ 14,5 MPa (NON STRUKTUR)

2022 ◽  
Vol 5 (1) ◽  
pp. 77-82
Author(s):  
Yosi Haristha ◽  
Elfania Bastian

Concrete is the majority of materials used in construction in Indonesia in general. Concrete mix innovations are needed so that concrete has better quality and quality. Innovation in concrete mixture one of them by using organic waste. In addition to improving quality, organic waste used is expected to reduce global warming. In Nagari IV Koto Palembayan ijuk from enau trees is not processed and left alone, so over time the ijuk can become waste. In this study discussed the effect of the addition of ijuk in the concrete mixture against the strong press of concrete. The targeted concrete press strong value is 14.5 MPa. The test object is made by varying the amount of ijuk addition in the concrete mixture by 0.25% and 0.5%. The test object used is a cylinder measuring 15cm in diameter and 30 cm high. Testing was conducted when the concrete was 7 days old, 14 days and 28 days old using 2 samples of test objects. The results showed a strong value of normal concrete press age of 28 days obtained at 15.57, while the strong value of additional concrete press ijuk 0.25% and 0.5% obtained by 19.82 MPa and 18.26 MPa. The results showed additional concrete ijuk 0.25% increased by 27.30% from the normal concrete press strength and the strong value of additional concrete press ijuk 0.5% also increased by 17.28% from the strong normal concrete press.

Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 11-20
Author(s):  
Ahmad Junaidi ◽  
R Dewo Hiraliyamaesa Hariyanto

Perumpung (Eulalia japonica) is a wild plant that usually grows on the banks of river. The locals consider this plant as a waste/pest, but the authors are interested in researching perumpung because they are similar to bamboo, sugarcane and other fibrous plants. In this study, the authors aims to compare the compressive strength of normal concrete with the compressive strength of concrete added with Perumpung ash at 28-days-old K-300. The study used a cube-shaped test object (15 x 15 x 15 cm) with 6 samples for each condition. The total number of test objects is 48, which consists of 8 conditions, namely normal conditions and 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% addition of perumpung ash by cement weight. The results obtained that the compressive strength of 28-days-old concrete under normal conditions was 316,060 kg/cm2 and the addition of 5% ash was 331.583 kg/cm2, 7.5% was 337.181 kg/cm2, 10% was 341.813 kg/cm2, 12 ,5% is 347,045 kg/cm2, 15% is 353,889 kg/cm2, 17.5% is 311,160 kg/cm2 and 20% is 298.44 kg/cm2. From the results above it can be concluded that the addition of 15% Perumpung Ash to the concrete mixture increases the maximum characteristic concrete compressive strength by 353.889 kg/cm2.


2020 ◽  
Vol 20 (3) ◽  
pp. 223-230
Author(s):  
Hijriah ◽  
Nur Hadijah Yunianti

The demand for environmentally friendly concrete mixtures is currently increasing due to an increase in global temperatures. Therefore, innovation is needed in the world of Civil Engineering to produce structures that can reduce global warming. One alternative that can be taken is by utilizing materials from environmentally friendly products such as Iron Slag. This study aims to determine the characteristics of the aggregate and to analyze the strength of the concrete mixture using Iron Slag as a substitute for fine aggregate. This research is an experimental study which was conducted in the Laboratory of Concrete and Structural Materials, Bosowa University. Variations in the test object were the levels of addition of Iron Slag with levels of 0%, 25% and 50%. The test object will be observed at the age of 28 days, where the number of test objects is 29 pieces. The tests carried out include testing the characteristics of the materials used, both coarse and fine aggregates, as well as testing the compressive strength of the concrete. Based on the results of the research analysis, it was concluded that Iron Slag waste met the criteria as fine aggregate for concrete mixtures.


2019 ◽  
Vol 1 (2) ◽  
pp. 124-132
Author(s):  
Hermansyah ◽  
Moh Ihsan Sibgotuloh

The more widespread use of concrete construction and the increasing scale of construction, the higher the demand for materials used in concrete mixes. One of the innovations of concrete is fiber concrete. Hope the addition of fiber in concrete mixes such as wire fiber to increase the compressive strength value of normal concrete that is often used, so the purpose of this study is to determine the effect of adding wire fiber to the ease of working (workability) of the concrete mixture and to determine the effect of adding wire fiber to concrete compressive strength. In this study, the fiber used is the type of wire fiber with a diameter of 1 mm and a length of 60 mm. Fiber variations used are 0%, 0.4%, 0.6% and 0.8% based on the weight of fresh concrete. Concrete mix (mix design) using SNI 03-2834-2000 about concrete mix planning with a test life of 28 days. The test results showed that the lowest average compressive strength of 12,291 MPa occurred at 0% variation and the highest average compressive strength value of 20,656 MPa at 0.8% fiber variation. The increase is caused by the even distribution of fibers in the concrete produced, the higher the variation that is given by the fiber, the better the fiber spread, from these fibers provide a fairly good contribution to the fiber concrete


2020 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Muh. Sayfullah S.

The purpose in this study was to know the characteristic properties of fine aggregate materials and rough aggregates derived from Badene Village batauga sub-district as well as to know the strong press produced by concrete against seawater mixture with variations of cement water factor. In this study the material was mixed using laur water and fresh water with variations in cement water factor which is 0.45, 0.50, and 0.55. Testing is carried out at the age of concrete 3 days, 7 days and 28 days, using the dimensions of the slinder test object 15 cm x 30 cm. The total number of test objects is 54 pieces. The stronger the concrete press by using seawater as a concrete mixture can increase the strong press of concrete when compared to fresh water, as well as the smaller the value of the cement water factor used then the greater the strong value of the press. Strong press concrete with seawater mixture using cement water factor 0.55, 0.50, and 0.45 at age 28 days produce strong concrete presses respectively 15.82 MPa, 18.65 MPa, and 20.85 MPa, while strong concrete press with freshwater mixture using cement water factor 0.55, 0.50, and 0.45 at 28 days old produce strong concrete press 15.70 MPa respectively 18.40 MPa and 20.00 MPa. The results showed the influence of seawater use on concrete mixtures can increase the strength of the press compared to the use of concrete mixtures using fresh water.


CI-TECH ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 45-48
Author(s):  
Triaswati ◽  
Srie Subekti ◽  
Sulchan Arifin ◽  
Febri Aditya

Stone dust nowadays is a side product of the stone crushing industry, the quality of which is quite a lot that it becomes a waste that needs to be handled. This study is intended to find out the composition of stone dust by adding some additive substance type D and type F to reach a compressive strength of 350 kg/cm2. The variation of percentage of stone dust on the composition of concrete mixture is 0%, 20%, 40%, 60%, 80%, 100%. The design of concrete mixture composition refers to the procedure of making preparation of the normal concrete mixture. SNI 03-2384-1993. The size of the cylinder test object is 15 cm in diameter and 30 cm in height. The result of this research shows that the mixture using stone dust has quite an effect on the compressive strength of concrete. From the result of the experiment, it is shown that for compressive strength of 350 kg/cm2, we can use 100% of stone dust with a resulted compressive strength of 445 kg/cm2.


2021 ◽  
Vol 29 (2) ◽  
pp. 146
Author(s):  
Johan Oberlyn Simanjuntak ◽  
Tiurma Elita Saragi ◽  
Nurvita Insani Simanjuntak ◽  
Imesari Hulu

One of the factors of economic growth is the development of infrastructure to encourage the creation of various activities. Concrete becomes an important part in the process of infrastructure development. For the concrete mixture, gravel is the most important part for concrete constituents. The limitation of gravel in nature led to the creation of various studies to replacement solutions for the use of gracel in concrete mixtures.Candlenut shell is one of the waste is not getting attention in its uses. Department of Plantation North Sumatera Province recorded the candlenut production in North Sumatera in 2019 reached 13,529.40 tons. The study aims for replace some of the gravel in the concrete mixture by using a candle nut shell. The variety of concrete mixture with candle nut is 10%, 20% and 30%. Testing was conducted on concrete ages 7 days, 14 days, 21 days and 28 days aimed at finding the difference between normal concrete compressive strength without additional candlenut shells and concrete with additional candlenut shells. The result shows that there was a decrease in the values of concrete compressive strength for each group of test objects. The decrease is due to the candlenut shell having higher and water absorption compared to gravel.


2019 ◽  
Vol 57 ◽  
pp. 105-116 ◽  
Author(s):  
Swetha Madhusudanan ◽  
Lilly Rose Amirtham ◽  
S. Nallusamy

Development and promotion of nano materials and technology has gained more attention of research scholars world wide spreding to different disciplines. In this research an approach has been made to study and investigate the behavioural properties and examine the microstuructural qualities of nano composite bricks replacing the cement with microsilica (mS) and nanosilica (nS) additives. The investigation was conducted using four types of specimens being normal concrete mixture with 0% of mS and nS, with 5%, 6% and 7% of mS, with 1%, 1.5% and, 2% of nS and replacing the cement with mixure of 5%+1%, 6%+1.5% and 7%+2% of mS and nS respectively. The results showed that, the maximum compression strength of 27.62MPa and 37.67MPa with the maximum flexural strength of 22.76MPa and 33.56MPa were possible when 6% of mS and 1.5% of nS were replaced respectively. Also, it was found that the maximum compression strength of 31.47MPa and flexural strength of 31.95MPa were achieved when we add 6%+1.5% mS and nS was added together in the concrete mix. The Scanning Electron Microscope (SEM) results revealed that, the mixture of mS and nS enhances the mechanical properties and the addition of mS and nS gives more symbiotic effects of densifying the microstructure in the hardened concrete mixture leading to better harmonic effects on durability.


2012 ◽  
Vol 622-623 ◽  
pp. 472-477
Author(s):  
Ali A. Karakhan ◽  
Angham E. Alsaffar

The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.


10.6036/10212 ◽  
2021 ◽  
Vol DYNA-ACELERADO (0) ◽  
pp. [ 7 pp]-[ 7 pp]
Author(s):  
Julieta Domínguez Soberanes ◽  
PIA BERGER

This study uses orange peel waste to create a biopolymer that can be used for different purposes. In order to achieve this, we evaluated various technologies for the production of the biopolymer, and tried to design the most environmentally friendly process possible. One of the reasons why this bioplastic should be manufactured is to participate in the replacement of common environmental hazardous plastic, which has been banned in many places. On the other hand, using orange peel as the main ingredient is an alternative and gives value to an organic waste that has limited use in circular economy solutions. In this research we present a methodology to create a bioplastic of orange peels. As a result, we obtained a biodegradable, flexible and resistant material to be used in the manufacture of containers, utensils, etc. In addition, it is a material that, given the raw materials used, is considered GRAS (Generally Recognized As Save), implying a non-toxic product that is safe for the consumer.


Sign in / Sign up

Export Citation Format

Share Document