scholarly journals Pengaruh Pemanfaatan Abu Tumbuhan Perumpung Terhadap Peningkatan Kuat Tekan Beton K300

Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 11-20
Author(s):  
Ahmad Junaidi ◽  
R Dewo Hiraliyamaesa Hariyanto

Perumpung (Eulalia japonica) is a wild plant that usually grows on the banks of river. The locals consider this plant as a waste/pest, but the authors are interested in researching perumpung because they are similar to bamboo, sugarcane and other fibrous plants. In this study, the authors aims to compare the compressive strength of normal concrete with the compressive strength of concrete added with Perumpung ash at 28-days-old K-300. The study used a cube-shaped test object (15 x 15 x 15 cm) with 6 samples for each condition. The total number of test objects is 48, which consists of 8 conditions, namely normal conditions and 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% addition of perumpung ash by cement weight. The results obtained that the compressive strength of 28-days-old concrete under normal conditions was 316,060 kg/cm2 and the addition of 5% ash was 331.583 kg/cm2, 7.5% was 337.181 kg/cm2, 10% was 341.813 kg/cm2, 12 ,5% is 347,045 kg/cm2, 15% is 353,889 kg/cm2, 17.5% is 311,160 kg/cm2 and 20% is 298.44 kg/cm2. From the results above it can be concluded that the addition of 15% Perumpung Ash to the concrete mixture increases the maximum characteristic concrete compressive strength by 353.889 kg/cm2.

CI-TECH ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 45-48
Author(s):  
Triaswati ◽  
Srie Subekti ◽  
Sulchan Arifin ◽  
Febri Aditya

Stone dust nowadays is a side product of the stone crushing industry, the quality of which is quite a lot that it becomes a waste that needs to be handled. This study is intended to find out the composition of stone dust by adding some additive substance type D and type F to reach a compressive strength of 350 kg/cm2. The variation of percentage of stone dust on the composition of concrete mixture is 0%, 20%, 40%, 60%, 80%, 100%. The design of concrete mixture composition refers to the procedure of making preparation of the normal concrete mixture. SNI 03-2384-1993. The size of the cylinder test object is 15 cm in diameter and 30 cm in height. The result of this research shows that the mixture using stone dust has quite an effect on the compressive strength of concrete. From the result of the experiment, it is shown that for compressive strength of 350 kg/cm2, we can use 100% of stone dust with a resulted compressive strength of 445 kg/cm2.


2021 ◽  
Vol 29 (2) ◽  
pp. 146
Author(s):  
Johan Oberlyn Simanjuntak ◽  
Tiurma Elita Saragi ◽  
Nurvita Insani Simanjuntak ◽  
Imesari Hulu

One of the factors of economic growth is the development of infrastructure to encourage the creation of various activities. Concrete becomes an important part in the process of infrastructure development. For the concrete mixture, gravel is the most important part for concrete constituents. The limitation of gravel in nature led to the creation of various studies to replacement solutions for the use of gracel in concrete mixtures.Candlenut shell is one of the waste is not getting attention in its uses. Department of Plantation North Sumatera Province recorded the candlenut production in North Sumatera in 2019 reached 13,529.40 tons. The study aims for replace some of the gravel in the concrete mixture by using a candle nut shell. The variety of concrete mixture with candle nut is 10%, 20% and 30%. Testing was conducted on concrete ages 7 days, 14 days, 21 days and 28 days aimed at finding the difference between normal concrete compressive strength without additional candlenut shells and concrete with additional candlenut shells. The result shows that there was a decrease in the values of concrete compressive strength for each group of test objects. The decrease is due to the candlenut shell having higher and water absorption compared to gravel.


2020 ◽  
Vol 8 (1) ◽  
pp. 36-41
Author(s):  
Whendy Trissan ◽  
Yongki Pratomo

In general, concrete fillers are made from materials that are easily obtained, easily processed, and have the durability and strength that is very much needed in particular construction of coarse and fine aggregates, each region would have different aggregates as the main ingredients in making concrete. The research conducted aims to determine how the optimum compressive strength value of the concrete produced from the addition of Kapuas Sand to the concrete mixture. In this research, Kapuas Sand is used as a fine aggregate enhancer. The percentage variation of Kapuas red sand used in this study varies, namely 0%, 25%, 50%, 75%, and 100%. Concrete mixture planning using SNI 03-2834-2000. The test uses cylindrical specimens with a height of 30 cm, a diameter of 15 cm with a total sample of 10 cylinders for each addition of Kapuas Sand so that the total specimens are 50 cylinders. Testing is carried out at the age of 14 and 28 days in the Laboratory of Building Engineering Education Study Program, Faculty of Teacher Training and Education, University of Palangka Raya. The results of the compressive strength of concrete using a mixture of Kapuas Sand at 28 days 0% 25%, 50%, 75% and, 100% respectively were 24.71 MPa, 21.79 MPa, 25.36 MPa, 23 .3 MPa, and .22.62 MPa. This result shows the compressive strength value of concrete in the concrete mix with a percentage of 50% that is equal to 25.36 MPa while the compressive strength of normal concrete is 24.71 MPa so that the compressive strength of concrete is 2.66% of normal concrete compressive strength with age concrete compressive strength 28 days.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Rafki Imani ◽  
Widiawati Purba ◽  
Rainaldi S Nainggolan

AbstractConcrete is composed of three main constituent materials, namely cement, aggregate and water. The development of concrete technology in the trial of adding a mixture of materials continues to be done to achieve the desired strength and quality. In this experiment, the addition of gypsum waste was used as a concrete mixture to determine its effect on the compressive strength of concrete. The variation in the percentage of the addition of gypsum waste is 5%, 10%, and 15% with the age of treatment observed at 14 days and 28 days. The results showed that the normal compressive strength value at 14 days was 186.87 kg/cm2, while with the addition of gypsum waste mixture the concrete compressive strength at 5%, 10% and 15% were obtained 178.45 kg respectively /cm2, 101, 01 kg/cm2, 70.71 kg/cm2. Meanwhile the compressive strength value of normal concrete at 28 days is 164.44 kg/cm2, and the compressive strength value of concrete after mixed with gypsum waste at 28 days is obtained 157.04 kg/cm2, 88.89 kg/cm2, 62.22 kg/cm2. Based on the results it can be concluded that the addition of gypsum waste as a concrete mixture material can reduce the compressive strength values of normal concrete.Keywords : Concrete, compressive strength, and gypsum waste.AbstrakBahan beton terdiri dari semen, pasir, kerikil dan air. Perkembangan teknologi beton dalam uji coba penambahan bahan campuran terus dilakukan untuk mendapatkan kekuatan dan mutu beton yang diinginkan. Dalam penelitian ini, penambahan limbah gipsum dimaksudkan sebagai campuran beton untuk melihat pengaruhnya pada nilai kuat tekan beton. Variasi persentase penambahan limbah gipsum ini adalah sebesar 5%, 10%, dan 15% dengan umur perawatan diamati pada umur 14 hari dan 28 hari. Hasil penelitian menunjukkan bahwa nilai kuat tekan beton normal pada umur 14 hari diperoleh sebesar 186,87 kg/cm2, sementara dengan penambahan campuran limbah gipsum nilai kuat tekan beton pada persentase 5%, 10% dan 15% secara berurutan diperoleh sebesar 178,45 kg/cm2, 101, 01 kg/cm2, 70,71 kg/cm2. Sementara nilai kuat tekan beton normal pada umur 28 hari adalah sebesar 164,44 kg/cm2, dan nilai kuat tekan beton setelah dicampur limbah gipsum pada umur 28 hari secara berurutan diperoleh sebesar 157,04 kg/cm2, 88,89 kg/cm2, 62,22 kg/cm2. Hasil penelitian menyimpulkan bahwa penambahan limbah gipsum sebagai bahan campuran beton dapat mengurangi nilai kuat tekan beton dibandingkan dengan kuat tekan beton normal. Kata kunci : Beton, kuat tekan dan limbah gipsum.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Syifa Fauziah ◽  
Anisah Anisah ◽  
Sittati Musalamah

This research aims to determine the maximum compressive strength value of concrete speedcrete using naphthalene additive additive at each test age and compare with normal concrete 28 days. This research used cylindrical test object with diameter 15 cm and height 30 cm. Speedcrete concrete does not undergo the treatment process while the normal concrete test object through the treatment process. Testing compressive strength of concrete speedcrete using Crushing Test Machine tool. In this research the compressive strength was produced by using superplasticizer type naphthalene and compared with normal concrete without using additive. The target quality plan is fc '35 MPa with the use of additive dose of 1.7% of the weight of cement. The results of this research showed an increase in the value of compressive strength of concrete speedcrete with aadditive materials added naphthalene increased with increasing age of concrete. The results showed that the compressive strength of concrete speedcrete with naphthalene additive materials of 12 hours, 18 hours, 28 hours and 48 hours was 0.5 MPa, 17,81 MPa, 31,14 MPa and 45,77 MPa. Normal strength concrete strength with the addition of 20% water age 28 days that is equal to 54.76 MPa.


2020 ◽  
Vol 20 (01) ◽  
pp. 61-68
Author(s):  
Siska Apriwelni ◽  
Nugraha Bintang Wirawan

(ID) Penelitian ini membahas pengaruh kuat tekan beton mutu tinggi dengan memanfaatkan limbah fly ash dan limbah kaca. Tujuan dari penelitian ini untuk mengetahui kuat tekan beton pada masing-masing variasi, mengetahui persentase campuran beton untuk menghasilkan kuat tekan maksimum, dan mengetahui apakah fly ash dan serbuk kaca efektif digunakan secara bersamaan sebagai bahan campuran beton. Komposisi fly ash terdiri dari 5 variasi yaitu persentase 0%, 5%, 10%, 15%, dan 20%. Sedangkan untuk komposisi serbuk kaca terdiri dari 2 variasi yaitu persentase 5% dan 10%. Jumlah benda uji 30 buah silinder berukuran diameter 15 cm dan tinggi 30 cm dengan 3 benda uji untuk setiap variasi. Perencanaan campuran beton menggunakan SNI 03-2834-2000 yang dimodifikasi. Pengujian kuat tekan diuji pada umur beton 28 hari. Beton dengan fly ash 0% dan serbuk kaca 10% memiliki kuat tekan paling tinggi dibandingkan dengan beton dengan tambahan fly ash, yaitu 46,77%. Selain itu, dapat disimpulkan bahwa semakin bertambahnya jumlah persentase serbuk kaca yang digunakan menunjukkan bahwa kuat tekan beton semakin bertambah juga. Penambahan fly ash pada campuran beton mempengaruhi kuat tekan beton yang dihasilkan. Pada variasi fly ash 0% memiliki kuat tekan tertinggi baik pada saat campuran serbuk kaca 5%dan 10%. Variasi fly ash 15% adalah kondisi optimum campuran beton dengan kuat tekan beton yaitu 43,31 Mpa. Kedua limbah ini dapat dikombinasikan dan dimanfaatkan dengan baik dan digunakan dalam pembuatan beton mutu tinggi. (EN) This study discusses the effect of high quality concrete by utilizing fly ash and glass waste. The purpose of this study is to determine the compressive strength of concrete in each variation, to determine the contribution of concrete to produce compressive strength, and to find out that fly ash and glass powder are effectively used in full as a concrete admixture. Fly ash composition consists of 5 variations, namely the percentage of 0%, 5%, 10%, 15%, and 20%. While for the composition of glass powder consists of 2 variations, namely the percentage of 5% and 10%. The number of specimens is 30 cylinders with a diameter of 15 cm and a height of 30 cm with 3 specimens for each variation. Concrete mixture planning using SNI 03-2834-2000 was developed. Compressive strength testing on concrete age 28 days. Concrete with 0% fly ash and 10% glass powder have the highest compressive strength compared to concrete with additional fly ash, which is 46.77%. In addition, it can increase the amount of glass powder addition that is used to show the concrete compressive strength is increasing as well. The addition of fly ash in the concrete mixture has an effect on the compressive strength of the concrete produced. In the variation of 0% fly ash has the highest compressive strength when the glass powder mixture of 5% and 10%. The 15% fly ash variation is the optimal concrete mixture with compressive strength of 43.31 MPa. These two wastes can be combined and utilized properly and are used in making high quality concrete.  


2021 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  
Muhammad Muhsar ◽  
Abdul Kadir ◽  
Sulaiman Sulaiman

The purpose of this study was to Analyze the characteristics of theaggregates used in concrete mixtures and analyze how muchincrease in compressive strength of concrete with a variation ofnickel slag substitution 0%, 5%, 15%, 25% compared with normalconcrete. The characteristics of the material examined are watercontent, sludge content, specific gravity and absorption, volumeweight, abrasion with los angeles machines, and filter analysis.While the large increase in compressive strength of concrete can betested at the age of 7 days, 14 days, 28 days and 35 days. From the results of the analysis of the characteristics of nickel slagwaste in concrete mixes meet the test standards in concretemixtures, with a moisture content of 0.86%, sludge content of 0.44%,specific gravity of 2.94 gr / cm3, volume weight of 1.76 gr / cm3,abrasion 36.07%. And a large increase in compressive strength ofconcrete with a variation of nickel slag substitution of 0%, 5%, 15%,25% compared to normal concrete is increasing. The highestpercentage increase in concrete compressive strength is found inconcrete compressive strength between a variation of 15% with avariation of 25% at 14 days concrete age, with a percentage increasein value of 13.13%.


Author(s):  
Sudirman Kimi ◽  
Abdullah Abuzar Alghafari

In the development of concrete technology (Concrete Technology) today which is increasingly unceasingly, along with the development of the era hence the quality of concrete selection as the main raw material of building construction is very important. This research writer take silica fume and glenium sky as added concrete mixture to know the influence of the addition of silica fume and glenium sky to the compressive strength of concrete. The research is divided into three stages : material testing, test object making and test object. This research uses cube-shaped specimen with size 15x15x15 cm, with 5 variations, they are normal concrete, silica fume 5%, silica fume 5% + glenium sky 2%, silica fume 5% + glenium sky 4%, and silica fume 5% + glenium sky 6%, which every variations has 3 test specimens with 3 days, 7 days, and 28 days. From laboratorium testing, the characteristics of compressive strength of concrete at age 28 days of normal concrete is 407,2 Kg/Cm2, normal concrete with silica fume 5% is 418,5 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 2% is 435,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 4% is 451,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 6% is 484,1 Kg/Cm2.


2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Nurjanah Nurjanah ◽  
M. Dani Juli Rohman ◽  
Riski Krisdiantoro

Abstrac This research was conducted to determine the effect of the addition of waste shells and shell powder glass powder on the compressive strength of concrete. The method used is to use the experimental method by making test specimens with a mixture of waste shells powder shells and glass powder by 4%; 8%; 12% then compared with normal concrete without added ingredients. Concrete specimens that have been soaked then tested their compressive strength with the age of 7 days, 14 days, 21 days, and 28 days. The results of the test showed that normal concrete which was not added with the waste of shell powder and glass powder had compressive strength under mixed concrete variations of 4%, 8%, and 12 % when the concrete was 28 days old. Concrete which is added with waste of shell powder and glass powder has  a high yield at 4% variation that is equal to 20,66 MPa. For concrete Variasi of 8% has a compressive streng value of 20,17 MPa, For variations of 12% has a compressive strength value of 20,46 MPa and for normal concrete has a compressive strength of 20,16 MPa at the age 28 days. The compressive strength value generated by the research that occurs due to the slump test value factor that is done is not the same.                       Keywords: Concrete, scallop waste powder, Glass powder waste, concrete compressive strength.


Sign in / Sign up

Export Citation Format

Share Document