scholarly journals Textile Finishing Using Polymer Nanocomposites for Radiation Shielding, Flame Retardancy and Mechanical Strength

Author(s):  
Sorna Gowri ◽  
◽  
Mohammad Akram Khan ◽  
Avanish Kumar Srivastava ◽  
◽  
...  

The uses of nanotechnologies in textiles are strategic and allow textiles to become multifunctional. There is an ever-increasing demand for new functionalities, like flame retardancy, radiation shielding, improved mechanical strength etc., for highly specific applications. There is no industrial supply for the above-mentioned functionalities. Keeping in view of this background, surface treatment becomes one of the most important methods to create new textile properties. Polymer nanocomposites based on coatings for textiles have a huge potential for innovative modifications of surface properties like flame retardancy, radiation shielding and improved mechanical properties, which can be applied with a comparatively low technical effort and at moderate temperatures. This review compiles recent research on polymer nanocomposites for functional finishing of textiles to understand the theoretical and experimental tools on polymer nanocomposites and their applications in textiles.

2014 ◽  
Vol 132 (13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yanmao Dong ◽  
Brian Lisco ◽  
Hao Wu ◽  
Joseph H. Koo ◽  
Mourad Krifa

2005 ◽  
Vol 288-289 ◽  
pp. 437-440 ◽  
Author(s):  
Guo Qiang Chen ◽  
Qiong Wu ◽  
Ya Wu Wang ◽  
Zhong Zheng

Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) has improved mechanical properties over the existing PHA and our results have shown that PHBHHx has better biocompatibility over polyhydroxybutyrate (PHB) and polylactic acid (PLA). Surface treatment with lipases dramatically changed the material surface properties and increased the biocompatibility of the PHBHHx. PHBHHx and its PHB blends had been used to make three dimensional structures and it has been found that cartilage, osteoblast, and fibroblasts all showed strong growth on the PHBHHx scaffolds. The growth was much better compared with PLA. The molecular studies also showed that mRNA encoding cartilages were strongly expressed when cartilage cells were grown on the PHBHHx. As PHBHHx has strong mechanical properties, easily processible and biodegradable, this material can be used to develop a new class of tissue engineering materials.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1974 ◽  
Vol 23 (5) ◽  

Abstract WC-3015 is a columbium-base alloy developed for structural applications in high-temperature oxidizing environments. It is characterized by good oxidation resistance, good mechanical properties and compatibility with silicide coatings. Cold-rolled sheet can be joined and welded without cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-21. Producer or source: Wah Chang, a Teledyne Corporation.


Sign in / Sign up

Export Citation Format

Share Document