scholarly journals Estimation of glacier runoff and future trends in the Yangtze River source region, China

2009 ◽  
Vol 55 (190) ◽  
pp. 353-362 ◽  
Author(s):  
Liu Shiyin ◽  
Zhang Yong ◽  
Zhang Yingsong ◽  
Ding Yongjian

AbstractGlacier runoff from the Yangtze River source region (YRSR), China, is estimated for the period 1961–2000 using a degree-day approach. In the investigation area, glacier runoff accounts for 11.0% of the total river runoff during the period 1961–2000. In the 1990s its contribution to river runoff rises to 17.0%. Due to the current rate of glacier decline, the impact of glacier runoff on river runoff has recently increased in the source region. Based on two different climate-change scenarios derived from ECHAM5/MPI-OM, future glacier runoff is assessed for the period 2001–50. In all climate-change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. There is an increase in glacier runoff during spring and early summer, yet a significant decrease in late summer. This study highlights the current and future impact of glacier runoff on river runoff in the YRSR.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xin Lai ◽  
Yuanfa Gong ◽  
Sixian Cen ◽  
Hui Tian ◽  
Heng Zhang

Based on runoff data collected at the Zhimenda station, reanalysis data from the National Centers of Environmental Prediction/National Centers of Atmospheric Research (NCEP/NCAR), and observation data from ground stations in China, this study analyzes the characteristics of changes in runoff in the source region of the Yangtze River (SRYR) during the flood season (from July to September), the relationship between runoff and antecedent rainfall, and the impact of the westerly jet (WJ) on rainfall in the coastal zone of the SRYR. The results show the following. The runoff in the SRYR displays a significant interannual and interdecadal variability. The runoff in the SRYR during the flood season is most closely related to 15-day (June 16 to September 15) antecedent rainfall in the coastal zone of the SRYR. In turn, the antecedent rainfall in the coastal zone of the SRYR is mainly affected by the intensity of the simultaneous WJ over a key region (55–85°E, 45–55°N). When the intensity of the WJ over the key region is greater (less) than normal, the jet position moves northward (southward), and the easterly (westerly) wind anomalies over the region to the west of the SRYR become unfavorable (favorable) to the transport of water vapor from high-latitude regions to the SRYR. In addition, the southerly wind over the equatorial region cannot (can) easily advance northward, which is unfavorable (favorable) to the northward transport of water vapor from the low-latitude ocean. Hence, these conditions result in a decrease (increase) in the water vapor content in the SRYR. Furthermore, the convergence (divergence) anomalies in the upper level and the divergence (convergence) anomalies in the lower level result in the descending (ascending) motion over the SRYR. These factors decrease (increase) the rainfall, thereby decreasing (increasing) the runoff in the SRYR during the flood season.


2013 ◽  
Vol 23 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Lin Li ◽  
Hongyan Shen ◽  
Sheng Dai ◽  
Hongmei Li ◽  
Jianshe Xiao

2021 ◽  
Author(s):  
Xiaohong Chen ◽  
Haoyu Jin ◽  
Pan Wu ◽  
Wenjun Xia ◽  
Ruida Zhong ◽  
...  

Abstract The source region of the Yangtze River (SRYR) is located in the hinterland of the Tibetan Plateau (TP). The natural environment is hash, and the hydrological and meteorological stations are less distributed, making the observed data are relatively scarce. In order to overcome the impact of lack of data, the China Meteorological Forcing Dataset (CMFD) was used to correct the meteorological data, to make the data more closer to the real distribution on the SRYR surface. This paper used the Soil and Water Assessment Tool (SWAT) to verify interpolation effect. Since the SRYR is an important water resource protection area, have a great significance to study the hydrological response under future climate change. The Back Propagation (BP) neural network algorithm was used to integrate data extracted from the six Global Climate Models (GCMs), and then the SWAT model was used to predict runoff changes in the future status. The results show that the CMFD data set has a high precision in the SRYR, and can be used for meteorological data correction. After the meteorological data correction, the Nash-Sutcliffe efficiency increased from 0.64 to 0.70. Under the future climate change, the runoff in the SRYR shows a decreasing trend, and the distribution of runoff during the year changes greatly. This reflects the amount of water resources in the SRYR will be decreased, which will brings challenges to water resources management in the SRYR.


2020 ◽  
Vol 589 ◽  
pp. 125207
Author(s):  
Lin Liu ◽  
Liming Jiang ◽  
Hansheng Wang ◽  
Xiaoli Ding ◽  
Houze Xu

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaowei Yao ◽  
Zhanqi Wang ◽  
Hua Wang

Land-use/land cover change (LUCC) is one of the fundamental causes of global environmental change. In recent years, understanding the regional climate impact of LUCC has become a hot-discussed topic worldwide. Some studies have explored LUCC impact on regional climate in specific cities, provinces, or farming areas. However, the quick-urbanized areas, which are highly influenced by human activities, have the most severe land-use changes in developing countries, and their climatic impact cannot be ignored. This study aims to identify the impact of land-use change coupled with urbanization on regional temperature and precipitation in the metropolitan areas of middle and lower reaches of the Yangtze River in China by means of spatial analysis and numeric methods. Based on the exploration of land-use change and climate change during 1988–2008, the impact of land-use transition from non-built-up area to built-up area on temperature and precipitation was analyzed. The results indicated that the land-use conversion has affected the regional temperature with an increasing effect in the study area, while the influence on precipitation was not so significant. The results can provide useful information for spatial planning policies in consideration of regional climate change.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 612
Author(s):  
Guangxing Ji ◽  
Huiyun Song ◽  
Hejie Wei ◽  
Leying Wu

Analyzing the temporal variation of runoff and vegetation and quantifying the impact of anthropic factors and climate change on vegetation and runoff variation in the source area of the Yangtze River (SAYR), is of great significance for the scientific response to the ecological protection of the region. Therefore, the Budyko hypothesis method and multiple linear regression method were used to quantitatively calculate the contribution rates of climate change and anthropic factors to runoff and vegetation change in the SAYR. It was found that: (1) The runoff, NDVI, precipitation, and potential evaporation in the SAYR from 1982 to 2016 all showed an increasing trend. (2) The mutation year of runoff data from 1982 to 2016 in the SAYR is 2004, and the mutation year of NDVI data from 1982 to 2016 in the SAYR is 1998. (3) The contribution rates of precipitation, potential evaporation and anthropic factors to runoff change of the SAYR are 75.98%, −9.35%, and 33.37%, respectively. (4) The contribution rates of climatic factors and anthropic factors to vegetation change of the SAYR are 38.56% and 61.44%, respectively.


Sign in / Sign up

Export Citation Format

Share Document