scholarly journals Textural characteristics of sea ice and the major mechanisms of ice growth in the Weddell Sea

1991 ◽  
Vol 15 ◽  
pp. 210-215 ◽  
Author(s):  
M. A. Lange ◽  
H. Eicken

We report on studies of sea-ice texture conducted during a number of expeditions into the Weddell Sea. Sea ice in the Antarctic is dominated by granular ice of frazil origin in floes of all ages, in contrast to ice in the Arctic, which consists predominantly of columnar ice of congelation origin. The large fraction of granular ice in first-year sea ice is a result of the dominant ice-formation process in the advancing ice edge, the pancake cycle. The dominance of granular over columnar ice in second- and/or multi-year ice is a result of the large degree of deformational activity in the Southern Ocean.

1991 ◽  
Vol 15 ◽  
pp. 210-215 ◽  
Author(s):  
M. A. Lange ◽  
H. Eicken

We report on studies of sea-ice texture conducted during a number of expeditions into the Weddell Sea. Sea ice in the Antarctic is dominated by granular ice of frazil origin in floes of all ages, in contrast to ice in the Arctic, which consists predominantly of columnar ice of congelation origin. The large fraction of granular ice in first-year sea ice is a result of the dominant ice-formation process in the advancing ice edge, the pancake cycle. The dominance of granular over columnar ice in second- and/or multi-year ice is a result of the large degree of deformational activity in the Southern Ocean.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


2006 ◽  
Vol 44 ◽  
pp. 147-153 ◽  
Author(s):  
Marcel Nicolaus ◽  
Christian Haas ◽  
Jörg Bareiss ◽  
Sascha Willmes

AbstractThe one-dimensional snow model SNTHERM is validated using field measurements of snow and superimposed ice thickness and surface energy fluxes. These were performed during the spring-to-summer transition in Svalbard and in the Weddell Sea, Antarctica. Both the seasonal snow-thickness decrease and the formation of superimposed ice are well reproduced by the model. During the three observation periods, observed and modeled snow thickness differ only by 13.1–27.1mm on average. In regional studies, the model is forced with atmospheric re-analysis data (European Centre for Medium-Range Weather Forecasts) and applied to several meridional transects across the Arctic and Southern Ocean. These show fundamental regional differences in the onset, duration and magnitude of snow thinning in summer. In the central Arctic, snowmelt onset occurs within a narrow time range of ±11 days and without significant regional differences. In contrast, the snow cover on Antarctic sea ice begins to melt about 25 days earlier and the length of the Antarctic snow-thinning season increases with increasing latitude. The importance of melting and evaporation for the modeled snow-thickness decrease is very different in the two hemispheres. The ratio of evaporated snow mass to melted snow mass per unit area is derived from the model, and amounts to approximately 4.2 in the Antarctic and only 0.75 in the Arctic. This agrees with observations and model results of the surface energy balance, and illustrates the dominance of surface cooling by upward turbulent fluxes in the Antarctic.


2021 ◽  
Author(s):  
◽  
Jonathan Crook

<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seawater at the ice-water interface. Such growth usually results, through geometric selection, in congelation ice. This is, in general, the typical crystal structure observed in first-year ice growth in the Arctic. However, in certain regions of the Antarctic, platelet crystals are observed to contribute significantly to the ice growth, beyond a depth of 1 m. This thesis will investigate a number of ideas as to why the platelet crystals only appear in the ice after a significant amount of congelation growth has occurred. One of the key premises will be that platelet ice forms when smaller frazil crystals, beneath the ice, rise up and attach to the interface. They are then incorporated into the ice cover and become the platelets seen in ice cores.  The Shields criterion is used to find the strength of turbulence, associated with tidal flow, required to keep a frazil crystal from adhering to the interface. It is shown that the sub-ice flow is sufficient to keep most crystals in motion. However, this turbulence may weaken or dissipate completely as the tide turns. The velocity associated with brine rejection is suggested as an alternative to keep the crystals in suspension during these periods of low shear turbulence. Brine rejection occurs as the sea ice grows, rejecting salt into the seawater below. By comparing this velocity with a model for the frazil rise velocity it is shown that brine rejection has sufficient strength to keep crystals in suspension. This effect weakens as the ice gets thicker, allowing larger frazil crystals to rise to the interface. The early work in this thesis shows that a flow can keep a single crystal from adhering to the interface. This can be regarded as the competence of a flow to keep a crystal in suspension. However, of equal importance is the capacity of a flow to keep a mass of crystals in suspension. It is shown that, given a sufficiently large mass of crystals beneath the ice, the same flow that can hold a single crystal in suspension will not be able to keep all the crystals in motion. The deposition of crystals is predicted to occur in a gradual manner if there is a steady build-up of crystals beneath the ice. The largest crystals, close to the interface, will settle against the ice as the flow is unable to support the entire mass of crystals Also considered is whether frazil crystals may be similar to cohesive sediments. If this is the case, a sudden influx of crystals from outside of the system may lead to the formation of a layer of unattached crystals beside the ice-water interface. This can cause a critical collapse of the turbulent field, resulting in the settling of a large quantity of frazil crystals. Though the emphasis of much of this thesis is on the effect of the flow on the crystals, it is also found that a mass of crystals can have a stabilising effect on the flow. The change in the density profile induced by an increase in the frazil concentration towards the ice-water interface (and hence a decrease in the density of the ice-water mixture) damps the turbulence produced by shear. The mass and size of crystals in suspension play major roles in the strength of stabilisation.  Measurements of turbulence and the suspension of frazil crystals beneath sea ice are difficult to make. This thesis aims to present and analyse a number of models which may explain the platelet puzzle - the delayed appearance of the platelet crystals in ice cores. These are compared with the observations which are available, and conclusions made on the validity of the theories presented.</p>


2013 ◽  
Vol 7 (1) ◽  
pp. 35-53 ◽  
Author(s):  
W. N. Meier ◽  
D. Gallaher ◽  
G. G. Campbell

Abstract. Satellite imagery from the 1964 Nimbus I satellite has been recovered, digitized, and processed to estimate Arctic and Antarctic sea ice extent for September 1964. September is the month when the Arctic reaches its minimum annual extent and the Antarctic reaches its maximum. Images were manually analyzed over a three-week period to estimate the location of the ice edge and then composited to obtain a hemispheric average. Uncertainties were based on limitations in the image analysis and the variation of the ice cover over the three week period. The 1964 Antarctic extent is higher than estimates from the 1979–present passive microwave record, but is in accord with previous indications of higher extents during the 1960s. The Arctic 1964 extent was near the 1979–2000 average from the passive microwave record, suggesting relatively stable summer extents until the recent large decrease. This early satellite record puts the recently observed into a longer-term context.


1998 ◽  
Vol 27 ◽  
pp. 455-460 ◽  
Author(s):  
R. Fisher ◽  
Victoria I. Lytle

Sea ice is a highly mobile component of the Antarctic environment. Its velocity and deformation are critical processes, important in global climate models. These variables are determined by the balance of atmospheric and oceanic forces on each ice Hoe and variations in these forcings, and can produce regions ofdivcrgence or convergence. Surface drag coefficients relate the forces due to wind or water to the stress applied to the ice floe. This study adds to the limited drag coefficients reported previously for Antarctic data. Surface elevation profiles were collected during two ship-based voyages to the Weddell Sea in 1992 and 1994, and were also recorded on Ice Station Weddell in 1992. These data are used to derive surface drag coefficients using an empirical formulation following Banke and others (1980). The eastern and western regions of the Weddell Sea contain primarily first- and second-year ice, respectively. Despite these different ice types, the drag coefficients calculated are similar. The difieren! ice-drifl/wind-speed ratio in the two regions suggests a difference in ocean currents, internal ice stress or water drag. The drag coefficients calculated ranged between 1.2 X 10 −3 and 2.2 X 10 −3 The results compare well with other published Antarctic coefficients, and are generally smaller than those reported for the Arctic.


2020 ◽  
Author(s):  
Qian Shi ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Jinfei Wang ◽  
François Massonnet ◽  
...  

Abstract. Ocean-sea ice coupled models constrained by varied observations provide different ice thickness estimates in the Antarctic. We evaluate contemporary monthly ice thickness from four reanalyses in the Weddell Sea, the German contribution of the Estimating the Circulation and Climate of the Ocean project, Version 2 (GECCO2), the Southern Ocean State Estimate (SOSE), the Nucleus for European Modelling of the Ocean (NEMO) based ocean-ice model (called NEMO-EnKF), and the Global Ice-Ocean Modeling and Assimilation System (GIOMAS), and with reference observations from ICESat-1, Envisat, upward looking sonars and visual ship-based sea-ice observations. Compared with ICESat-1 altimetry and in situ observations, all reanalyses underestimate ice thickness near the coast of the western Weddell Sea, even though ICESat-1 and visual observations may be biased low. GECCO2 and NEMO-EnKF can well reproduce the seasonal variation of first-year ice thickness in the eastern Weddell Sea. In contrast, GIOMAS ice thickness performs best in the central Weddell Sea, while SOSE ice thickness agrees most with the observations in the southern coast of the Weddell Sea. In addition, only NEMO-EnKF can reproduce the seasonal spatial evolution of ice thickness distribution well, characterized by the thick ice shifting from the southwestern and western Weddell Sea in summer to the western and northwestern Weddell Sea in spring. We infer that the thick ice distribution is correlated with its better simulation of northward ice motion in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis for understanding the recent variability of sea-ice volume in the Antarctic.


2013 ◽  
Vol 54 (62) ◽  
pp. 13-18 ◽  
Author(s):  
Angelika H. H. Renner ◽  
Stefan Hendricks ◽  
Sebastian Gerland ◽  
Justin Beckers ◽  
Christian Haas ◽  
...  

AbstractThe large-scale thickness distribution of sea ice was measured during several campaigns in the European Arctic north of Svalbard from 2007 using an airborne electromagnetic induction device. In August 2010 and April-May 2011, this was complemented by extensive on-ice work including measurements of snow thickness and freeboard. Ice thicknesses show a clear difference between the seasons, with thicker ice during spring than in summer. In spring 2011, negative freeboard and flooding were observed as a result of the extensive snow cover. We find that the characteristics of the first-year sea ice allow combining observations from different years. The ice thickness in the marginal ice zone increases with increasing latitude and increasing distance to the ice edge; however, in the inner ice pack from ∼100 km from the ice edge the thickness remains almost constant. Modal ice thickness in spring reaches 2.4 m whereas in summer it is 1.0–1.4 m. Our study provides new insight into ice thickness distributions of a typical ice cover consisting of mainly first- and second-year ice, which may become the dominant ice type in the Arctic in the future.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2021 ◽  
Author(s):  
◽  
Jonathan Crook

<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seawater at the ice-water interface. Such growth usually results, through geometric selection, in congelation ice. This is, in general, the typical crystal structure observed in first-year ice growth in the Arctic. However, in certain regions of the Antarctic, platelet crystals are observed to contribute significantly to the ice growth, beyond a depth of 1 m. This thesis will investigate a number of ideas as to why the platelet crystals only appear in the ice after a significant amount of congelation growth has occurred. One of the key premises will be that platelet ice forms when smaller frazil crystals, beneath the ice, rise up and attach to the interface. They are then incorporated into the ice cover and become the platelets seen in ice cores.  The Shields criterion is used to find the strength of turbulence, associated with tidal flow, required to keep a frazil crystal from adhering to the interface. It is shown that the sub-ice flow is sufficient to keep most crystals in motion. However, this turbulence may weaken or dissipate completely as the tide turns. The velocity associated with brine rejection is suggested as an alternative to keep the crystals in suspension during these periods of low shear turbulence. Brine rejection occurs as the sea ice grows, rejecting salt into the seawater below. By comparing this velocity with a model for the frazil rise velocity it is shown that brine rejection has sufficient strength to keep crystals in suspension. This effect weakens as the ice gets thicker, allowing larger frazil crystals to rise to the interface. The early work in this thesis shows that a flow can keep a single crystal from adhering to the interface. This can be regarded as the competence of a flow to keep a crystal in suspension. However, of equal importance is the capacity of a flow to keep a mass of crystals in suspension. It is shown that, given a sufficiently large mass of crystals beneath the ice, the same flow that can hold a single crystal in suspension will not be able to keep all the crystals in motion. The deposition of crystals is predicted to occur in a gradual manner if there is a steady build-up of crystals beneath the ice. The largest crystals, close to the interface, will settle against the ice as the flow is unable to support the entire mass of crystals Also considered is whether frazil crystals may be similar to cohesive sediments. If this is the case, a sudden influx of crystals from outside of the system may lead to the formation of a layer of unattached crystals beside the ice-water interface. This can cause a critical collapse of the turbulent field, resulting in the settling of a large quantity of frazil crystals. Though the emphasis of much of this thesis is on the effect of the flow on the crystals, it is also found that a mass of crystals can have a stabilising effect on the flow. The change in the density profile induced by an increase in the frazil concentration towards the ice-water interface (and hence a decrease in the density of the ice-water mixture) damps the turbulence produced by shear. The mass and size of crystals in suspension play major roles in the strength of stabilisation.  Measurements of turbulence and the suspension of frazil crystals beneath sea ice are difficult to make. This thesis aims to present and analyse a number of models which may explain the platelet puzzle - the delayed appearance of the platelet crystals in ice cores. These are compared with the observations which are available, and conclusions made on the validity of the theories presented.</p>


Sign in / Sign up

Export Citation Format

Share Document