scholarly journals Erosion rates and sediment yields of glaciers

1996 ◽  
Vol 22 ◽  
pp. 48-52 ◽  
Author(s):  
Jim Bogen

Sediment yields and glacial erosion rates are evaluated for four Norwegian glaciers during the years 1989-93. Annual erosion rates were determined from measurements of sediment load and water discharge in glacial meltwater rivers. The mean sediment yield and the corresponding erosion rate of the valley glaciers Engabreen and Nigardsbreen were found to be 456 t km−2 year−1 (0.168 mm year−1) and 210 t km−2 year−1 (0.078 mm year−1), respectively. A small and slow-moving cirque glacier Øvre Beiarbre yielded a rate of 482 t km−2 year−1 (0.178 mm year−1), and the sub-polar Svalbard glacier Brøggerbreen yielded 613 t km−2 year−1 (0.226 mm year−1). The erosion rates are low compared to glaciers elsewhere. There are also considerable variations in sediment yields at each glacier from year to year. However, different factors are found to control the variability on each individual glacier. Analysis of the relationship between water discharge and sediment concentration in meltwater rivers suggests that changes in subglacial drainage systems cause variations in sediment availability and the way sediments are melted out from the ice. When water pressure drops, the drainage system in fast-moving, thick valley glaciers deforms at a more rapid rate than in thin, slow-moving ones. New volumes of debris-laden ice are thus more readily available for melting when water pressure next increases. Beneath the thin, slow-moving Øvre Beiarbre, single years with high transport rates and evacuation of sediment are followed by periods of low availability lasting for 2 years or longer. It is suggested that this pattern results from exhaustion of sediment in a stable drainage system, with more sediment becoming available when the position of the subglacial drainage system is changed.

1996 ◽  
Vol 22 ◽  
pp. 48-52 ◽  
Author(s):  
Jim Bogen

Sediment yields and glacial erosion rates are evaluated for four Norwegian glaciers during the years 1989-93. Annual erosion rates were determined from measurements of sediment load and water discharge in glacial meltwater rivers. The mean sediment yield and the corresponding erosion rate of the valley glaciers Engabreen and Nigardsbreen were found to be 456 t km−2year−1(0.168 mm year−1) and 210 t km−2year−1(0.078 mm year−1), respectively. A small and slow-moving cirque glacier Øvre Beiarbre yielded a rate of 482 t km−2year−1(0.178 mm year−1), and the sub-polar Svalbard glacier Brøggerbreen yielded 613 t km−2year−1(0.226 mm year−1). The erosion rates are low compared to glaciers elsewhere. There are also considerable variations in sediment yields at each glacier from year to year. However, different factors are found to control the variability on each individual glacier. Analysis of the relationship between water discharge and sediment concentration in meltwater rivers suggests that changes in subglacial drainage systems cause variations in sediment availability and the way sediments are melted out from the ice. When water pressure drops, the drainage system in fast-moving, thick valley glaciers deforms at a more rapid rate than in thin, slow-moving ones. New volumes of debris-laden ice are thus more readily available for melting when water pressure next increases. Beneath the thin, slow-moving Øvre Beiarbre, single years with high transport rates and evacuation of sediment are followed by periods of low availability lasting for 2 years or longer. It is suggested that this pattern results from exhaustion of sediment in a stable drainage system, with more sediment becoming available when the position of the subglacial drainage system is changed.


1989 ◽  
Vol 13 ◽  
pp. 45-50 ◽  
Author(s):  
David N. Collins

During the ablation seasons of 1983 and 1987, measurements of discharge and suspended sediment concentration of melt waters draining from Gornergletscher, Switzerland, were obtained at hourly intervals, permitting estimation of total daily sediment flux. Seasonal patterns of variation in sediment flux are interpreted in terms of development of the subglacial drainage network. Variations in flux relate to contrasting temporal patterns of run-off, and the differing incidence of subglacial hydrological events in the 2 years. During such events, in which basal water pressure is raised, large areas of previously hydraulically isolated sub-sole are integrated with flow, releasing quantities of sediment from basal storage. Several types of event are identified, arising during periods of generally increasing discharge in the early ablation season, resulting from temporary blocking of subglacial passageways or from outbursts emptying a marginal, ice-dammed lake, and related to rain-induced floods. Flow spreads out over the glacier bed as pressure increases, suggesting that the basal drainage system consists of a diffuse network of many linked cavities rather than fewer major conduits, particularly at the start of the season. A distributed cavity system may be simplified to fewer conduits, dimensions of cavities may enlarge or the area of bed over which cavities are developing may be expanded to supply debris to melt waters during events. Different partial areas of sub-sole become progressively integrated with flow during sequences of hydrological events. Later in summer, melt waters are confined to basal areas within which only limited sediment remains available for acquisition.


1989 ◽  
Vol 13 ◽  
pp. 45-50 ◽  
Author(s):  
David N. Collins

During the ablation seasons of 1983 and 1987, measurements of discharge and suspended sediment concentration of melt waters draining from Gornergletscher, Switzerland, were obtained at hourly intervals, permitting estimation of total daily sediment flux. Seasonal patterns of variation in sediment flux are interpreted in terms of development of the subglacial drainage network. Variations in flux relate to contrasting temporal patterns of run-off, and the differing incidence of subglacial hydrological events in the 2 years. During such events, in which basal water pressure is raised, large areas of previously hydraulically isolated sub-sole are integrated with flow, releasing quantities of sediment from basal storage. Several types of event are identified, arising during periods of generally increasing discharge in the early ablation season, resulting from temporary blocking of subglacial passageways or from outbursts emptying a marginal, ice-dammed lake, and related to rain-induced floods. Flow spreads out over the glacier bed as pressure increases, suggesting that the basal drainage system consists of a diffuse network of many linked cavities rather than fewer major conduits, particularly at the start of the season. A distributed cavity system may be simplified to fewer conduits, dimensions of cavities may enlarge or the area of bed over which cavities are developing may be expanded to supply debris to melt waters during events. Different partial areas of sub-sole become progressively integrated with flow during sequences of hydrological events. Later in summer, melt waters are confined to basal areas within which only limited sediment remains available for acquisition.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jinpeng Zhao ◽  
Zhongsheng Tan ◽  
Zhenliang Zhou

With the orderly promotion of the infrastructure construction in China, the number of coastal tunnels is increasing, but the coastal environment is accompanied by a large amount of groundwater and the designs of the waterproof and drainage system of coastal tunnels have always been a hot topic in the industry. If the waterproof and drainage system designs of the coastal tunnels are improper, the tunnel structure will easily be damaged and the stability and service life of the whole project will be affected. Based on the Gongbei tunnel project of the Hong Kong-Zhuhai-Macao Bridge, this paper discusses the designs of the waterproof and drainage system, and the waterproof detail structures of the Gongbei tunnel. Indoor similarity tests were carried out to study the law of the free water discharge of the tunnel under variable water heads, the relationship between the water pressure outside the lining and the water discharge, the relationship between the water pressure outside the pipe roof and the water discharge, and the distribution of water pressure around the tunnel. The reliability of the indoor similarity test was verified by the field test. The results show that the whole waterproof system should be adopted in the Gongbei tunnel, that is, grouting ring + pipe roof freezing ring + initial lining + waterproof board + tertiary lining. In a certain range, the greater the water head, the greater the free water discharge of the tunnel. When the water head is large, the free drainage tends to a fixed value. When the tunnel is completely plugged, the water pressure outside the tunnel is distributed from the hydrostatic pressure. When the tunnel adopts drainage measures, the water pressure outside the lining will be reduced to a certain extent even the water discharge is very small. The above research can provide a reference for the design of the waterproof and drainage system similar to the coastal tunnel in the future.


2020 ◽  
Author(s):  
Emma L. M. Lewington ◽  
Stephen J. Livingstone ◽  
Chris D. Clark ◽  
Andrew J. Sole ◽  
Robert D. Storrar

Abstract. We identify and map traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada from ArcticDEM data. Meltwater tracks, tunnel valleys and esker splays exhibit several key similarities, including width, spacing, their association with eskers and transitions to and from different types, which together suggest they form part of an integrated drainage signature. We collectively term these features 'meltwater corridors' and propose a new model for their formation, based on observations from contemporary ice masses, of pressure fluctuations surrounding a central conduit. We suggest that eskers record the imprint of a central conduit and meltwater corridors the interaction with the surrounding distributed drainage system. The widespread aerial coverage of meltwater corridors (5–36 % of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations and variations in spatial distribution and evolution of the subglacial drainage system, which will modulate the ice dynamic response.


2015 ◽  
Vol 3 (3) ◽  
pp. 849-908 ◽  
Author(s):  
F. Beaud ◽  
G. E. Flowers ◽  
J. G. Venditti

Abstract. Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.


2014 ◽  
Vol 8 (3) ◽  
pp. 959-976 ◽  
Author(s):  
C. Schoof ◽  
C. A Rada ◽  
N. J. Wilson ◽  
G. E. Flowers ◽  
M. Haseloff

Abstract. The presence of strong diurnal cycling in basal water pressure records obtained during the melt season is well established for many glaciers. The behaviour of the drainage system outside the melt season is less well understood. Here we present borehole observations from a surge-type valley glacier in the St Elias Mountains, Yukon Territory, Canada. Our data indicate the onset of strongly correlated multi-day oscillations in water pressure in multiple boreholes straddling a main drainage axis, starting several weeks after the disappearance of a dominant diurnal mode in August 2011 and persisting until at least January 2012, when multiple data loggers suffered power failure. Jökulhlaups provide a template for understanding spontaneous water pressure oscillations not driven by external supply variability. Using a subglacial drainage model, we show that water pressure oscillations can also be driven on a much smaller scale by the interaction between conduit growth and distributed water storage in smaller water pockets, basal crevasses and moulins, and that oscillations can be triggered when water supply drops below a critical value. We suggest this in combination with a steady background supply of water from ground water or englacial drainage as a possible explanation for the observed wintertime pressure oscillations.


2020 ◽  
Author(s):  
Ugo Nanni ◽  
Florent Gimbert ◽  
Philippe Roux ◽  
Albanne Lecointre

<p>Subglacial hydrology strongly modulates glacier basal sliding, and thus likely exerts a major control on ice loss and sea-level rise. However, the limited direct and spatialized observations of the subglacial drainage system make difficult to assess the physical processes involved in its development. Recent work shows that detectable seismic noise is generated by subglacial water flow, such that seismic noise analysis may be used to retrieve the physical properties of subglacial channelized water flow. Yet, investigating the spatial organisation of the drainage system (e.g. channels numbers and positions) together with its evolving properties (e.g. pressure conditions) through seismic observations remains to be done. The objective of this study is to bring new insights on the subglacial hydrology spatio-temporal dynamics using dense array seismic observations.</p><p>We use 1-month long ground motion records at a hundred of sensors deployed on the Argentière Glacier (French Alps) during the onset of the melt season, when the subglacial drainage system is expected to strongly evolve in response to the rapidly increasing water input. We conduct a multi-method approach based on the analysis of both amplitude and phase maps of seismic signals. We observe characteristic spatial patterns, consistent across those independent approaches, which we attribute to the underlying subglacial drainage system.</p><p>The phase-driven approach shows seismic noise sources that focuses in the along-flow direction as the water input increases. We identify this evolution as the development of the main subglacial channel whose position is coherent with the one expected from hydraulic potential calculations. During periods of rapid changes in water input (5 days over 31) and concomitant glacier acceleration the amplitude-driven approach shows spatial pattern highly consistent with the seismic noise sources location. At this time, we suggest that the spatial variations in the amplitude are representative of the water pressure conditions in subglacial channels and surrounding areas. Our spatialized observations therefore reveal the spatio-temporal evolution of the subglacial drainage system together with its changing pressure conditions. We observe, for instance, that channels develop at the very onset of the melt-season and rapidly capture the water from surrounding areas. Such unique observations may allow to better constrain the physics of subglacial water flow and therefore strengthen our knowledge on the dynamics of subglacial environments.</p>


1998 ◽  
Vol 44 (147) ◽  
pp. 359-367 ◽  
Author(s):  
Brian Hanson ◽  
Roger LeB. Hooke ◽  
Edmund M. Grace

AbstractDuring the 1991 94 summer held seasons, time-correlated measure-merits of water pressure and surface speed were made over and down-glacier from a major riegel on Storglaciären, Sweden. Measurements were made at sub-hourly time-scales in order to discern details in the diurnal cycle. Large water-input events, typically associated with rain storms, produced coherent, lagged surface-velocity responses that could be understood in terms of till deformation or decoupling, and these have been discussed elsewhere. The consequences of smaller diurnal water-pressure events w ere more enigmatic, in that acceleration of ice flow generally preceded the onset of the local water-pressure rise. From consideration of these data and other work done on the hydrology of Storglaciären, we infer that the ice in this area is generally pushed from behind via a relaxation in extensional strain across the riegel. Hence, accelerations occur in response to increases in water pressure that occur up-glacier and that precede local water-pressure rises. In addition, following a period of large storm events, surface speeds became more spatially coherent and were in phase with the diurnal water-pressure cycle. This suggests that the large water-pressure events lead to a spatially more homogeneous subglacial drainage system. Sliding laws need to take into account such temporal changes in spatial coherence of the subglacial drainage system.


1997 ◽  
Vol 43 (144) ◽  
pp. 328-338 ◽  
Author(s):  
Almut Iken ◽  
Martin Truffe

AbstractFindelengletscher, Switzerland, advanced about 250 m between 1979 and 1985, and retreated thereafter. Subglacial water pressure, surface velocity and surface strain rate were determined at several sites. The measurements were made early in the melt seasons of 1980, 1982, 1985 and 1994 and in the autumn of 1983 and the winter of 1984. Changes of surface geometry were assessed from aerial photographs.The estimated basal shear stress changed little between 1982 and 1994. Nevertheless, large changes in the relationship of subglacial water pressure and surface velocity were observed, which cannot be reconciled with the most commonly used sliding law unless it is modified substantially. Consideration of possible reasons indícales that a change in the subglacial drainage system occurred, probably involving a change in the degree of cavity interconnection. Isolated cavities damp the variations in sliding velocity that normally result from changes in water pressure, because the pressure in isolated cavities decreases as the sliding speed increases. In contrast, by transmitting water-pressure fluctuations to a larger area of the bed, interconnected cavities amplify the effect of water-pressure fluctuations on sliding speed. Thus, we suggest that an observed decrease in velocity (for a given water pressure) between 1982 and 1994 was a consequence of a decrease in the interconnectedness of the subglacial cavity system.


Sign in / Sign up

Export Citation Format

Share Document