scholarly journals On the climate–geometry imbalance, response time and volume–area scaling of an alpine glacier: insights from a 3-D flow model applied to Vadret da Morteratsch, Switzerland

2015 ◽  
Vol 56 (70) ◽  
pp. 51-62 ◽  
Author(s):  
H. Zekollari ◽  
P. Huybrechts

AbstractA two-dimensional surface mass-balance model is coupled to a three-dimensional higher-order ice flow model to assess the imbalance between climate and glacier geometry for the Morteratsch (Engadine, Switzerland) glacier complex. The climate–geometry imbalance has never been larger than at present, indicating that the temperature increase is faster than the geometry is able to adapt to. We derive response times from transient and steady-state geometries and find that the volume response time is correlated to the magnitude of the mass-balance forcing. It varies between 22 and 43 years, while the length response time is between 47 and 55 years. Subsequently, the modelled response times are compared with different analytical methods from the literature. The effect of a climatic perturbation on the response time, which produces a spatially distributed mass-balance forcing, is also examined. We investigate the effect of glacier size on the response time and project that the response time will decrease in the future due to a surface steepening. Finally, volume–area scaling methods with different parameters are tested and an alternative method is proposed that takes into account the surface slope. The effect of a transient state on the method is also evaluated.

2009 ◽  
Vol 3 (1) ◽  
pp. 243-275 ◽  
Author(s):  
S. C. B. Raper ◽  
R. J. Braithwaite

Abstract. Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It is currently believed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation) and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients which we derive from glacier-climate modelling and the latter are quantified with data from the World Glacier Inventory. Aside from the well-known scaling relation between glacier volume and area, we establish a new scaling relation between glacier altitude range and area, and evaluate it for seven regions. The presence of this scaling parameter in our response time formula accounts for the mass balance elevation feedback and leads to longer response times than given by the simple ratio of glacier thickness to ablation. Volume response times range from decades to thousands of years for glaciers in maritime (wet-warm) and continental (dry-cold) climates, respectively. The combined effect of volume-area and altitude-area scaling relations is such that volume response time can increase with glacier area (Axel Heiberg Island and Svalbard), hardly change (Northern Scandinavia, Southern Norway and the Alps) or even get smaller (The Caucasus and New Zealand).


2009 ◽  
Vol 3 (2) ◽  
pp. 183-194 ◽  
Author(s):  
S. C. B. Raper ◽  
R. J. Braithwaite

Abstract. Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It has been previously proposed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation) and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients which we derive from glacier-climate modelling and the latter are quantified with data from the World Glacier Inventory. Aside from the well-known scaling relation between glacier volume and area, we establish a new scaling relation between glacier altitude range and area, and evaluate it for seven regions. The presence of this scaling parameter in our response time formula accounts for the mass balance elevation feedback and leads to longer response times than given by the simple ratio of glacier thickness to ablation at the terminus. Volume response times range from decades to thousands of years for glaciers in maritime (wet-warm) and continental (dry-cold) climates respectively. The combined effect of volume-area and altitude-area scaling relations is such that volume response time can increase with glacier area (Axel Heiberg Island and Svalbard), hardly change (Northern Scandinavia, Southern Norway and the Alps) or even get smaller (The Caucasus and New Zealand).


1999 ◽  
Vol 52 (1) ◽  
pp. 27-43 ◽  
Author(s):  
Alun Hubbard

Ice-sheet modeling tightly constrained by empirical studies provides an effective framework to reconstruct past climatic and environmental conditions. Scotland was severely affected by the abrupt climate change associated with the Younger Dryas Stade, during which an extensive ice sheet formed across the west highlands after a period of ice-free conditions. Here, a quasi-three-dimensional, time-dependent ice flow/mass-balance model is developed and applied to Scotland at 1 km resolution. The flow model is based on the driving stress approximation with an additional longitudinal correction term, essential at this scale of operation. Surface mass balance is driven by temperature and precipitation changes and further mass wastage is achieved through an empirically defined calving term. The ice dynamics and mass-balance components are coupled through the equation for mass continuity, which is integrated through time over a finite-difference grid which yields the geometric evolution of the ice sheet. Initial experiments reveal the model to be relatively insensitive to internal parameters but highly sensitive to mass balance. Furthermore, these experiments indicate that Scotland is readily susceptible to glaciation with large glaciers building up on the flanks of Ben Nevis after a temperature depression of 2.5°C, under present-day precipitation.The Younger Dryas is modeled using a GRIP temperature series locally adjusted for amplitude and a systematic series of runs enables the isolation of the climate which best matches mapped ice limits. This “optimum-fit” configuration requires an annual temperature cooling of 8°C and the introduction of substantial west–east and south–north precipitation gradients of 40 and 50%, respectively, to the present-day regime. Under these conditions, a series of substantial independent regional ice centers develop in agreement with trimline studies and after 550 year the modeled ice sheet closely resembles the maximum limits as indicated by field mapping. However, modeled ice continues to expand beyond 550 yr, in conflict with the mapped ice limits which suggest a prolonged period of stability. This discrepancy may be explained by the onset of extreme aridity ca. 400 yr into the Stade associated with a southern migration of the Polar Front, leading to a reduction in atmospheric circulation which effectively starved the ice sheet of its moisture source, preventing further expansion. Introduction of an additional 20% reduction in precipitation to the “optimum-fit” regime after 350 yr brings the modeled ice sheet to equilibrium, substantiating this conclusion.


2009 ◽  
Vol 55 (193) ◽  
pp. 789-796 ◽  
Author(s):  
Tron Laumann ◽  
Atle Nesje

AbstractA flowline model, coupled with a surface mass-balance model forced by climate data from Bergen, was used to simulate future frontal changes of Briksdalsbreen, a western outlet glacier from Jostedalsbreen, western Norway, under various future climate scenarios. The model was used to calculate the time-lag of frontal response to a sudden and short change in the mass balance. According to the model, the front has a time-lag for maximum advance rate of 4–5 years, in close agreement with previous studies. The response time for Briksdalsbreen was calculated by running the model for 200 years with different mass-balance perturbations. For mass-balance perturbations of +0.3 and +0.6 m w.e. the model yields response times of 52 and 60 years, respectively. We ran the model from 1963 to 2007 with measured mass-balance data, and from 2007 to 2085 using calculated mass balances from 12 different climate scenarios. The model predicts retreat up the steep valley from the lake inlet, with a total frontal retreat of 2.5–5.0 km by 2085. A spectacular icefall, one of the main tourist attractions in western Norway, may thus disappear and the glacier may become a plateau glacier that will gradually melt down.


2009 ◽  
Vol 3 (3) ◽  
pp. 765-804 ◽  
Author(s):  
S. Adhikari ◽  
S. J. Marshall ◽  
P. Huybrechts

Abstract. Himalayan glaciers are considered to be amongst the most sensitive glaciers to climate change. However, the response behaviour of these glaciers is not well understood. Here we use several approaches to estimate characteristic timescales of glacier AX010, a small valley glacier in the Nepal Himalaya, as a measure of glacier sensitivity. Assuming that temperature solely defines the mass budget, glacier AX010 waits for about 8 yr (reaction time) to exhibit its initial terminus response to changing climate. On the other hand, it takes between 29–56 yr (volume response time) and 37–70 yr (length response time) to adjust its volume and length following the changes in mass balance conditions, respectively. A numerical ice-flow model, the only method that yields both length and volume response time, confirms that a glacier takes longer to adjust its length than its volume.


2021 ◽  
Vol 15 (2) ◽  
pp. 1131-1156
Author(s):  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz ◽  
Florian A. Ziemen ◽  
Christian B. Rodehacke ◽  
Clemens Schannwell

Abstract. A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.


1992 ◽  
Vol 38 (129) ◽  
pp. 223-232 ◽  
Author(s):  
J. Oerlemans

AbstractThree glaciers in southern Norway, with very different mass-balance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate sensitivity. Calculated changes in equilibrium-line altitude for a 1 K temperature increase are 110, 108 and 135 m for Nigardsbreen, Hellstugubreen and Alfotbreen, respectively. The corresponding changes in mass balance, averaged over the entire glacier area, are −0.88, −0.715 and −1.11 m year−1 (water equivalent).Runs with an ice-flow model for Nigardsbreen, to which calculated mass-balance profiles arc imposed, predict that the front will advance by 3 km for a 1 K cooling, and will retreat by as much as 6.5 km for a 1 K warming. The response to a 10% increase in precipitation would be a 2 km advance of the snout, whereas a 4 km retreat is predicted for a 10% decrease. This large sensitivity (as compared to many other glaciers) is to a large extent due to the geometry of Nigardsbreen.


2020 ◽  
Author(s):  
Tobias Sauter ◽  
Anselm Arndt ◽  
Christoph Schneider

Abstract. Glacial changes play a key role both from a socio-economical and political, and scientific point of view. The identification and the understanding of the nature of these changes still poses fundamental challenges for climate, glacier and water research. Many studies aim to identify the climatic drivers behind the observed glacial changes using distributed surface mass and energy balance models. Distributed surface mass balance models, which translate the meteorological conditions on glaciers into local melting rates, thus offer the possibility to attribute and detect glacier mass and volume responses to changes in the climatic forcings. A well calibrated model is a suitable test-bed for sensitivity, detection and attribution analyses for many scientific applications and often serves as a tool for quantifying the inherent uncertainties. Here we present the open-source coupled snowpack and ice surface energy and mass balance model in Python COSIPY, which provides a lean, flexible and user-friendly framework for modelling distributed snow and glacier mass changes. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The framework consists of a computational kernel, which forms the runtime environment and takes care of the initialization, the input-output routines, the parallelization as well as the grid and data structures. This structure offers maximum flexibility without having to worry about the internal numerical flow. The adaptive sub-surface scheme allows an efficient and fast calculation of the otherwise computationally demanding fundamental equations. The surface energy-balance scheme uses established standard parameterizations for radiation as well as for the energy exchange between atmosphere and surface. The schemes are coupled by solving both surface energy balance and subsurface fluxes iteratively in such that consistent surface skin temperature is returned at the interface. COSIPY uses a one-dimensional approach limited to the vertical fluxes of energy and matter but neglects any lateral processes. Accordingly, the model can be easily set up in parallel computational environments for calculating both energy balance and climatic surface mass balance of glacier surfaces based on flexible horizontal grids and with varying temporal resolution. The model is made available on a freely accessible site and can be used for non-profit purposes. Scientists are encouraged to actively participate in the extension and improvement of the model code.


2020 ◽  
Vol 66 (259) ◽  
pp. 846-860 ◽  
Author(s):  
David Farías-Barahona ◽  
Ryan Wilson ◽  
Claudio Bravo ◽  
Sebastián Vivero ◽  
Alexis Caro ◽  
...  

AbstractUsing an ensemble of close- and long-range remote sensing, lake bathymetry and regional meteorological data, we present a detailed assessment of the geometric changes of El Morado Glacier in the Central Andes of Chile and its adjacent proglacial lake between 1932 and 2019. Overall, the results revealed a period of marked glacier down wasting, with a mean geodetic glacier mass balance of −0.39 ± 0.15 m w.e.a−1 observed for the entire glacier between 1955 and 2015 with an area loss of 40% between 1955 and 2019. We estimate an ice elevation change of −1.00 ± 0.17 m a−1 for the glacier tongue between 1932 and 2019. The increase in the ice thinning rates and area loss during the last decade is coincident with the severe drought in this region (2010–present), which our minimal surface mass-balance model is able to reproduce. As a result of the glacier changes observed, the proglacial lake increased in area substantially between 1955 and 2019, with bathymetry data suggesting a water volume of 3.6 million m3 in 2017. This study highlights the need for further monitoring of glacierised areas in the Central Andes. Such efforts would facilitate a better understanding of the downstream impacts of glacier downwasting.


2005 ◽  
Vol 51 (175) ◽  
pp. 561-572 ◽  
Author(s):  
M. Gerbaux ◽  
C. Genthon ◽  
P. Etchevers ◽  
C. Vincent ◽  
J.P. Dedieu

AbstractA new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mass-balance reconstructions for the period 1981–2004 are produced using meteorological reconstruction from the SAFRAN meteorological model for Glacier de Saint-Sorlin and Glacier d’Argentière, French Alps. Both glaciers lost mass at an accelerated rate in the last 23 years. The spatial distribution of precipitation within the model grid is adjusted using field mass-balance measurements. This is the only correction made to the SAFRAN meteorological input to the glacier model, which also includes surface atmospheric temperature, moisture, wind and all components of downward radiation. Independent data from satellite imagery and geodetic measurements are used for model validation. With this model, glacier sensitivity to climate change can be separately evaluated with respect to a full range of meteorological parameters, whereas simpler models, such as degree-day models, only account for temperature and precipitation. We provide results for both mass balance and equilibrium-line altitude (ELA) using a generic Alpine glacier. The sensitivity of the ELA to air temperature alone is found to be 125 m °C–1, or 160 m °C¯1 if concurrent (Stefan–Boltzmann) longwave radiation change is taken into account.


Sign in / Sign up

Export Citation Format

Share Document