scholarly journals Mass Balance of Rhonegletscher During 1882/83–1986/87

1990 ◽  
Vol 36 (123) ◽  
pp. 199-209 ◽  
Author(s):  
Jiyang Chen ◽  
Martin Funk

AbstractThe glaciological investigations on Rhonegletscher were started in 1874. The mass-balance data measured during 1884/85–1908/09 and during 1979/80–1981/82 are presented. Two methods are used for estimating the mass changes. During 1882/83–1968/69, the cumulative specific net balance is −24 ± 6 m w.e. at the 90% confidence level by the regression model of annual mass balance, annual precipitation, and summer air temperature (the PT model), while the thickness change revealed by the maps is −23 ± 5 m w.e. The cumulative specific net balance during 1882/83–1986/87 is −26 ± 6 m w.e. at the 90% confidence level.The study shows that Rhonegletscher generally experienced mass loss, especially during the periods from the late 1920s through the early 1960s with some short periods of positive balance. The glacier tongue retreated by 970 m during 1882–1986, that is, from 1780 ma.s.l. (1882) to 2130 ma.s.1. (1986). During 1882–1969, the ice-covered area decreased by 4.37 km2 and the volume by 4.71 × 108 m3.The PT models of Rhonegletscher and other alpine glaciers suggest that the contribution of the temperature changes to the mass balance is of more importance than that of the precipitation changes. The great mass loss reflects the climatic warming after the end of the Little Ice Age, with the warmest period occurring around the 1940s in this region.

1990 ◽  
Vol 36 (123) ◽  
pp. 199-209 ◽  
Author(s):  
Jiyang Chen ◽  
Martin Funk

AbstractThe glaciological investigations on Rhonegletscher were started in 1874. The mass-balance data measured during 1884/85–1908/09 and during 1979/80–1981/82 are presented. Two methods are used for estimating the mass changes. During 1882/83–1968/69, the cumulative specific net balance is −24 ± 6 m w.e. at the 90% confidence level by the regression model of annual mass balance, annual precipitation, and summer air temperature (the PT model), while the thickness change revealed by the maps is −23 ± 5 m w.e. The cumulative specific net balance during 1882/83–1986/87 is −26 ± 6 m w.e. at the 90% confidence level.The study shows that Rhonegletscher generally experienced mass loss, especially during the periods from the late 1920s through the early 1960s with some short periods of positive balance. The glacier tongue retreated by 970 m during 1882–1986, that is, from 1780 ma.s.l. (1882) to 2130 ma.s.1. (1986). During 1882–1969, the ice-covered area decreased by 4.37 km2and the volume by 4.71 × 108m3.The PT models of Rhonegletscher and other alpine glaciers suggest that the contribution of the temperature changes to the mass balance is of more importance than that of the precipitation changes. The great mass loss reflects the climatic warming after the end of the Little Ice Age, with the warmest period occurring around the 1940s in this region.


2014 ◽  
Vol 8 (4) ◽  
pp. 1497-1507 ◽  
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.


Geology ◽  
2013 ◽  
Vol 41 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Nathan D. Stansell ◽  
Byron A. Steinman ◽  
Mark B. Abbott ◽  
Michael Rubinov ◽  
Manuel Roman-Lacayo

1992 ◽  
Vol 16 ◽  
pp. 11-16 ◽  
Author(s):  
Liu Chaohai ◽  
Han Tianding

Since the Little Ice Age, most glaciers in the Tien Shan mountains have been retreating. Owing to an increase in precipitation in most parts of the mountains during the late 1950s to early 1970s, the percentage of receding glaciers and the speed of retreat have tended to decrease in the 1970s. However, the general trend of continuous glacier retreat remains unchanged, in part because the summer air temperature shows no tendency to decrease.In the Tien Shan mountains, as the degree of climatic continentality increases the mass balance becomes more dependent on summer temperature, and accumulation and ablation tend to be lower. Therefore, the responses of glaciers to climatic fluctuations in more continental areas are not synchronous with those in less continental areas, and the amplitude of the glacier variations becomes smaller.


2001 ◽  
Vol 47 (159) ◽  
pp. 579-588 ◽  
Author(s):  
L. A. Rasmussen ◽  
H. Conway

AbstractA simple flux model using twice-daily measurements of wind, humidity and temperature from standard upper-air levels in a distant radiosonde estimated winter balance of South Cascade Glacier, Washington, U.S.A., over 1959–98 with error 0.24 m w.e. Correlation between net and winter balance is strong; the model estimates net balance with error 0.53 m w.e. Over the past 40 years, average net balance of South Cascade Glacier has been strongly negative (−0.46 m w.e.), and it has been shrinking steadily. In comparison, 200 km west-southwest at Blue Glacier, the average balance has been less negative (−0.13 m w.e); that glacier has undergone little change over the 40 years. Balance histories of the two glaciers are positively correlated (r = +0.54), and South Cascade has been more out of balance than Blue, presumably because it is still adjusting to climate change since the Little Ice Age. Recent warming and drying has made the net balance of both glaciers strongly negative since 1976 (−0.84 m w.e. at South Cascade, −0.56 m w.e. at Blue). If South Cascade Glacier were in balance with the 1986–98 climate, it would be about one-quarter of its present area.


2014 ◽  
Vol 8 (1) ◽  
pp. 1257-1278
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance at the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 10 to more than 150 yr. We show that although the frontal portion of HG thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, KG was stable from 1981 to 1998 and experienced major thinning only after 2003. Extending the record back to the end of the Little Ice Age (ca. 1850) shows no significant thinning of HG from 1850 to 1981, while KG underwent substantial thinning of ~265 m. Analyses of their sensitivity to sub-surface water temperature anomalies and variations in air temperature suggest that both HG and KG are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. At century time-scales, however, multiple external parameters (e.g. outlet shape) dominate the mass change. These findings undermine attempts to use measurements over the last decade as initial conditions to project future dynamic ice loss.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 272
Author(s):  
Stephanie Suzanne Weidemann ◽  
Jorge Arigony-Neto ◽  
Ricardo Jaña ◽  
Guilherme Netto ◽  
Inti Gonzalez ◽  
...  

The Cordillera Darwin Icefield loses mass at a similar rate as the Northern and Southern Patagonian Icefields, showing contrasting individual glacier responses, particularly between the north-facing and south-facing glaciers, which are subject to changing climate conditions. Detailed investigations of climatic mass balance processes on recent glacier behavior are not available for glaciers of the Cordillera Darwin Icefield and surrounding icefields. We therefore applied the coupled snow and ice energy and mass balance model in Python (COSIPY) to assess recent surface energy and mass balance variability for the Schiaparelli Glacier at the Monte Sarmiento Massif. We further used COSIPY to simulate steady-state glacier conditions during the Little Ice Age using information of moraine systems and glacier areal extent. The model is driven by downscaled 6-hourly atmospheric data and high resolution precipitation fields, obtained by using an analytical orographic precipitation model. Precipitation and air temperature offsets to present-day climate were considered to reconstruct climatic conditions during the Little Ice Age. A glacier-wide mean annual climatic mass balance of −1.8 ± 0.36 m w.e. a − 1 was simulated between between April 2000 and March 2017. An air temperature decrease between −0.9 ° C and −1.7 ° C in combination with a precipitation offset of up to +60% to recent climate conditions is necessary to simulate steady-state conditions for Schiaparelli Glacier in 1870.


2021 ◽  
Author(s):  
Guðfinna Aðalgeirsdóttir ◽  
Eyjólfur Magnússon ◽  
Finnur Pálsson ◽  
Thorsteinn Thorsteinsson ◽  
Joaquín Belart ◽  
...  

<p>The volume of glaciers in Iceland (∼3,400 km<sup>3</sup> in 2019) corresponds to about 9 mm of potential global sea level rise. In this study, observations from 98.7% of glacier covered areas in Iceland (in 2019) are used to construct a record of mass change of Icelandic glaciers since the end of the 19th century i.e. the end of the Little Ice Age (LIA) in Iceland. Glaciological (in situ) mass-balance measurements have been conducted on Vatnajökull, Langjökull, and Hofsjökull since the glaciological years 1991/92, 1996/97, and 1987/88, respectively. The combined record shows a total mass change of −540 ± 130 Gt (−4.2 ± 1.0 Gt a−1 on average) during the study period (1890/91 to 2018/19). This mass loss corresponds to 1.50 ± 0.36 mm sea level equivalent or 16 ± 4% of mass stored in Icelandic glaciers around 1890. Almost half of the total mass change occurred in 1994/95 to 2018/19, or −240 ± 20 Gt (−9.6 ± 0.8 Gt a−1 on average), with most rapid loss in 1994/95 to 2009/10 (mass change rate −11.6 ± 0.8 Gt a−1). During the relatively warm period 1930/31–1949/50, mass loss rates were probably close to those observed since 1994, and in the colder period 1980/81–1993/94, the glaciers gained mass at a rate of 1.5 ± 1.0 Gt a−1. For other periods of this study, the glaciers were either close to equilibrium or experienced mild loss rates. Comparison of our results with WGMS time series (Zemp et al., 2019) shows that the interannual variability is generally well captured by both data sets, but some details are not; for example, the large ice melt due to the Gjálp eruption in October 1996 and the non-surface mass balance are not included by WGMS data set. Our time seris is within the large uncertainty range of the GRACE record (Wouters et al., 2019) that has some years (e.g., 2006/07 and 2010/11) with more negative mass change, and others (e.g., 2005/06, 2011/12, and 2013/14) with less negative mass change than our estimates.</p>


1997 ◽  
Vol 24 ◽  
pp. 361-366
Author(s):  
François Valla ◽  
Christian Piedallu

Glacier de Sarennes, located in the heart of the French Alps, has been observed closely since 1906 and regularly measured (snow accumulation, ablation and mass balance) since 1948. Several publications have stemmed from this research, such as the 1906 and 1958 glaciological maps and the 1981 and 1991 photogrammetric analyses. In 1992, a field radar campaign determined the ice thickness and allowed the drawing of the bedrock map with reasonable accuracy. The Little Ice Age stage was reconstructed with the bedrock tracks, in 1995.The above-mentioned documents were digitized, and the computer program Arc-Info permitted the calculation of the successive volume stages occupied by the glacier from 1850 to 1991. Cross-sections and slope profiles illustrate the evolution of the thickness of Glacier de Sarennes during the last 150 years. All of these results, consistent with the variation of the mass balance observed or estimated, show the main conclusion: compared with today, the glacier was about four times more voluminous 90 years ago (i.e. it has lost three-quarters of its ice volume) and five times bigger one and a half centuries ago.


Sign in / Sign up

Export Citation Format

Share Document