scholarly journals Effects of Solar Radiation on the Formation of Weak Wet Snow

1989 ◽  
Vol 13 ◽  
pp. 120-123 ◽  
Author(s):  
Kaoru Izumi

Laboratory and field experiments on hardness of snow have shown that the free water contained in snow decreases its hardness, and that solar radiation further decreases hardness down to a value below the limit of that which would result only from the influence of the water content of snow. A quantitative relationship between the amount of solar radiation absorbed by snow and decrease in snow hardness was derived. Thin-section analyses of snow were used to reveal the mechanism of decrease in snow hardness which had been caused by solar radiation.

1989 ◽  
Vol 13 ◽  
pp. 120-123 ◽  
Author(s):  
Kaoru Izumi

Laboratory and field experiments on hardness of snow have shown that the free water contained in snow decreases its hardness, and that solar radiation further decreases hardness down to a value below the limit of that which would result only from the influence of the water content of snow. A quantitative relationship between the amount of solar radiation absorbed by snow and decrease in snow hardness was derived. Thin-section analyses of snow were used to reveal the mechanism of decrease in snow hardness which had been caused by solar radiation.


Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Frances L. Walsh ◽  
Sujit Banerjee

Abstract A new technique for measuring the monolayer water content of fiber is presented. Tritiated water is added to a pulp/water suspension, whereupon the tritium partitions between the bulk water and the pulp. In the pulp phase the tritium can exchange with free water, bound water, and with hydroxyl and other protons present in the pulp matrix. The free water in the pulp is then removed by displacement with acetone. The tritium remaining in the pulp is mostly associated with tightly bound water, with a small fraction being tied up with the exchangeable hydrogen in pulp. The procedure provides a value of 10% for the tightly bound water content of hardwood or softwood fiber, either bleached or unbleached. If this water is assumed to cover the fiber surface as a monolayer, then an estimate of the wet surface area of the fiber can be obtained. This estimate compares well with independent measurements of surface area.


1985 ◽  
Vol 6 ◽  
pp. 246-247 ◽  
Author(s):  
Eizi Akitaya

A new calorimeter was designed for measuring the free water content of wet snow, aiming at simplicity in mechanism and handling as well as high accuracy and speed in measurements. The mass of hot water to melt the sample and the mass of the mixture (snow sample and hot water) are measurable indoors with sufficient accuracy; therefore, in the field we need only two measurements of temperature (T and T ); this calorimeter reduces the time of measurement of one snow sample to four or five minutes. Using artificially made wet snow, having a known value of free water content, 121 tests were conducted. Standard deviation of the error was 0.82%


2000 ◽  
Vol 31 (2) ◽  
pp. 89-106 ◽  
Author(s):  
A. Lundberg ◽  
H. Thunehed

The snow-water equivalent of late-winter snowpack is of utmost importance for hydropower production in areas where a large proportion of the reservoir water emanates from snowmelt. Impulse radar can be used to estimate the snow-water equivalent of the snowpack and thus the expected snowmelt discharge. Impulse radar is now in operational use in some Scandinavian basins. With radar technology the radar wave propagation time in the snowpack is converted into snow-water equivalent with help of a parameter usually termed the a-value. Use of radar technology during late winter brings about risk for measurements on wet snow. The a-value for dry snow cannot be used directly for wet snow. We have found that a liquid-water content of 5% (by volume) reduces the a-value by approximately 20%. In this paper an equation, based on snow density and snow liquid water content, for calculation of wet-snow a-value is presented.


1985 ◽  
Vol 6 ◽  
pp. 246-247 ◽  
Author(s):  
Eizi Akitaya

A new calorimeter was designed for measuring the free water content of wet snow, aiming at simplicity in mechanism and handling as well as high accuracy and speed in measurements. The mass of hot water to melt the sample and the mass of the mixture (snow sample and hot water) are measurable indoors with sufficient accuracy; therefore, in the field we need only two measurements of temperature (T and T ); this calorimeter reduces the time of measurement of one snow sample to four or five minutes. Using artificially made wet snow, having a known value of free water content, 121 tests were conducted. Standard deviation of the error was 0.82%


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 383
Author(s):  
Dawid Szatten ◽  
Mirosław Więcław

Global solar radiation is an important atmospheric stimulus affecting the human body and has been used in heliotherapy for years. In addition to environmental factors, the effectiveness of global solar radiation is increasingly influenced by human activity. This research was based on the use of heliographic and actinometric data (1996–2015) and the model distribution of global solar radiation to determine the possibility of heliotherapy with the example of two health resorts: Cieplice and Kołobrzeg (Poland). The solar features of health resorts (sunshine duration and global solar radiation) were characterized, and they were correlated with the spatial distribution of global solar radiation data obtained with the use of remote sensing techniques (System for Automated Geoscientific Analyzes-SAGA), including COoRdination and INformation on the Environment (CORINE) land cover (CLC) data. Using the maximum entropy model (MaxEnt), a qualitative and quantitative relationship between morphometric parameters and solar climate features was demonstrated for individual land cover types. Studies have shown that the period of late spring and summer, due to the climate’s solar features, is advisable for the use of heliotherapy. The human activity that determines the land cover is the main element influencing the spatial differentiation of the possibilities of using this form of health treatment. It also affects topographic indicators shown as significant in the MaxEnt predictive model. In general, areas with high openness were shown as predisposed for health treatment using global solar radiation, which is not consistent with areas commonly used for heliotherapy. The conducted research has shown the need for an interdisciplinary approach to the issue of heliotherapy, which will contribute to the optimization of the use of this form of health treatment from the perspective of climate change and human pressure.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 789
Author(s):  
Klára Kosová ◽  
Miroslav Klíma ◽  
Ilja Tom Prášil ◽  
Pavel Vítámvás

Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.


2021 ◽  
pp. 1-10
Author(s):  
Min Huang ◽  
Zui Tao ◽  
Tao Lei ◽  
Fangbo Cao ◽  
Jiana Chen ◽  
...  

Summary The development of high-yielding, short-duration super-rice hybrids is important for ensuring food security in China where multiple cropping is widely practiced and large-scale farming has gradually emerged. In this study, field experiments were conducted over 3 years to identify the yield formation characteristics in the shorter-duration (∼120 days) super-rice hybrid ‘Guiliangyou 2’ (G2) by comparing it with the longer-duration (∼130 days) super-rice hybrid ‘Y-liangyou 1’ (Y1). The results showed that G2 had a shorter pre-heading growth duration and consequently a shorter total growth duration compared to Y1. Compared to Y1, G2 had lower total biomass production that resulted from lower daily solar radiation, apparent radiation use efficiency (RUE), crop growth rate (CGR), and biomass production during the pre-heading period, but the grain yield was not significantly lower than that of Y1 because it was compensated for by the higher harvest index that resulted from slower leaf senescence (i.e., slower decline in leaf area index during the post-heading period) and higher RUE, CGR, and biomass production during the post-heading period. Our findings suggest that it is feasible to reduce the dependence of yield formation on growth duration to a certain extent in rice by increasing the use efficiency of solar radiation through crop improvement and also highlight the need for a greater fundamental understanding of the physiological processes involved in the higher use efficiency of solar radiation in super-rice hybrids.


Sign in / Sign up

Export Citation Format

Share Document