scholarly journals 3D Visualization For Augmented Reality In ‘Jajanan Pasar’ Puzzles

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Jessica Carlina

Jajanan Pasar is a term for Indonesian traditional snacks, a part of Indonesian culture that has been forgotten by the young generation. Three-dimensional (3D) animation and Augmented Reality (AR) can be used as a medium for introducing this culture to children aged 4 to 6. Because, in AR, visual between real and digital world can be altered, so the visual of 3D models can be enjoyed from various sides. This study focuses on 3D visualization for AR that packaged in 5 set of puzzles. Each piece has an illustration of the ingredients for making 5 kinds of Jajanan Pasar, after all, puzzle pieces of each set get arranged, a new 3D model of traditional snacks will be appeared. The data was collected using literature and existing studies method. The purpose of this study is to create an optimal 3D visualization for AR that will be applicated for mobile devices. Conclusion from this project are the polygon count and target marker’s quality, affect the appearance of the 3D model in AR form.

Author(s):  
F. I. Hairuddin ◽  
A. R. Abdul Rasam ◽  
M. H. Razali

Abstract. This paper discusses the capabilities of cadastre augmented reality (AR) and three-dimensional (3D) visualization in enhancing the stratified property visibility and information of the current strata plan in Malaysia. Currently, 2D information representation from the 2D+1D cadastre system is seen to be insufficient in serving real land management of the 3D aspect and property. Hence, toward a better digital 3D strata/property registration and land administration system in Malaysia, this study has explored the process in utilizing AR and 3D model to the current strata plan to enhance digital strata information contents and enabling the virtual strata plan presentation. The software used to develop the AR application smartphone was Unity3D software while Autodesk Revit applied to develop the 3D model and preparation of strata information. The interesting findings has been shown in this study. First result showed 3D models and strata parcel’s attribute that has been developed for AR digital content preparation. Secondly, this 3D-AR processes can continuously gather of user’s ambient information, conduct real-world recognition, and obtain real-world perception through smartphone device. Lastly, with utilization of AR technology in strata, it provides a more information to the strata plan without needing to change the current format of strata plan as the information are being displayed virtually onto the reality. With the integration of augmented reality and 3D visualization, the documentation of stratified properties in strata plan is potential to be enhanced from 2D planimetric to 3D representation. overlaid 3D model of the stratified property and standard strata information virtually on the present strata plan which has created an enhanced reality. This can allow the information to be viewed by more stakeholders with less restriction by using smartphone device.


2021 ◽  
Author(s):  
◽  
Jay Vaai

<p>This research addresses the gap between construction project management and the 3D visualization of construction sequence. Typically project managers use software that presents construction stages as 2D Gantt charts, where the X axis represents time and the Y axis represents the construction activity. These are then typically cross referenced to either 2D or 3D construction drawings. The potential of linking construction sequencing charts and critical paths to Building Information Models is well established. So called ‘4D BIM’ applications such as Synchro enable the linking of three dimensional information and Gantt charts. There is also precedent in virtual reality simulations, such as the AR4BC project by (Woodward, Hakkarainen, & Rainio, 2010) and the desktop VR simulation applications for teaching construction management (Nikolic, 2006). From these and other precedents it is observed that 4D BIM is orientated towards the final stages of design where models are complex and not optimized, while full VR applications are typically not available in practice. Moreover, recent availability of augmented reality applications for mobile devices opens up new ways to integrate 4D BIM into project management. As part of initial discussions with consultants, a mock-up of an AR application running on a tablet that would enable on - site visualization was demonstrated. Given positive feedback, prototype applications were developed using the Unity interactive 3D authoring platform, which provides real time interaction between a Gantt chart and a 3D model. The final AR application uses a plan drawing as the marker and the user can switch between isometric and first person cameras to review construction sequencing, with the aim of identifying potential sequencing issues and / or clashes in the design while on site. The prototype interface and functionality have been evaluated through a series of structured interviews with building industry professionals. The results of these interviews have been analysed and from this, key performance criteria and guidelines for further development have been identified. This thesis illustrates the potential of AR on mobile devices for construction management, documents the design and implementation of a prototype application and articulates issues for further research from the perspective of key building industry stakeholders.</p>


2019 ◽  
Vol 9 (14) ◽  
pp. 2929 ◽  
Author(s):  
Aleš Procházka ◽  
Tatjana Dostálová ◽  
Magdaléna Kašparová ◽  
Oldřich Vyšata ◽  
Hana Charvátová ◽  
...  

Augmented reality has a wide range of applications in many areas that can extend the study of real objects into the digital world, including stomatology. Real dental objects that were previously examined using their plaster casts are often replaced by their digital models or three-dimensional (3D) prints in the cyber-physical world. This paper reviews a selection of digital methods that have been applied in dentistry, including the use of intra-oral scanning technology for data acquisition and evaluation of fundamental features of dental arches. The methodology includes the use of digital filters and morphological operations for spatial objects analysis, their registration, and evaluation of changes during the treatment of specific disorders. The results include 3D models of selected dental arch objects, which allow a comparison of their shape and position during repeated observations. The proposed methods present digital alternatives to the use of plaster casts for semiautomatic evaluation of dental arch measures. This paper describes some of the advantages of 3D digital technology replacing real world elements and plaster cast dental models in many areas of classical stomatology.


2021 ◽  
Author(s):  
◽  
Jay Vaai

<p>This research addresses the gap between construction project management and the 3D visualization of construction sequence. Typically project managers use software that presents construction stages as 2D Gantt charts, where the X axis represents time and the Y axis represents the construction activity. These are then typically cross referenced to either 2D or 3D construction drawings. The potential of linking construction sequencing charts and critical paths to Building Information Models is well established. So called ‘4D BIM’ applications such as Synchro enable the linking of three dimensional information and Gantt charts. There is also precedent in virtual reality simulations, such as the AR4BC project by (Woodward, Hakkarainen, & Rainio, 2010) and the desktop VR simulation applications for teaching construction management (Nikolic, 2006). From these and other precedents it is observed that 4D BIM is orientated towards the final stages of design where models are complex and not optimized, while full VR applications are typically not available in practice. Moreover, recent availability of augmented reality applications for mobile devices opens up new ways to integrate 4D BIM into project management. As part of initial discussions with consultants, a mock-up of an AR application running on a tablet that would enable on - site visualization was demonstrated. Given positive feedback, prototype applications were developed using the Unity interactive 3D authoring platform, which provides real time interaction between a Gantt chart and a 3D model. The final AR application uses a plan drawing as the marker and the user can switch between isometric and first person cameras to review construction sequencing, with the aim of identifying potential sequencing issues and / or clashes in the design while on site. The prototype interface and functionality have been evaluated through a series of structured interviews with building industry professionals. The results of these interviews have been analysed and from this, key performance criteria and guidelines for further development have been identified. This thesis illustrates the potential of AR on mobile devices for construction management, documents the design and implementation of a prototype application and articulates issues for further research from the perspective of key building industry stakeholders.</p>


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


Author(s):  
Luis Marques ◽  
Josep Roca

The creation of 3D models of urban elements is extremely relevant for urbanists constituting digital archives and being especially useful for enriching maps and databases or reconstructing and analyzing objects/areas through time, building/recreating scenarios and implementing intuitive methods of interaction. The widespread data available online offer new opportunities to generate realistic 3D models without the need to go physically to the place. This chapter aims to demonstrate the potential 3D modeling and visualization/interaction of urban elements in the city for multiple purposes, and it is organized in four main topics: The first deals with the theoretical framework regarding the bases of the human perception of the spatial environment and the importance of 3D modelling. The second and third deal with technical procedures on terrestrial/aerial data acquisition and demonstrate alternatively data gathered online to generate 3D models for the visualization of urban elements of the city, and the fourth introduces 3D model visualization within an augmented reality environment.


2020 ◽  
Vol 10 (10) ◽  
pp. 3632 ◽  
Author(s):  
Dolores Parras-Burgos ◽  
Daniel G. Fernández-Pacheco ◽  
Thomas Polhmann Barbosa ◽  
Manuel Soler-Méndez ◽  
José Miguel Molina-Martínez

Nowadays, the combination of new technologies and the use of mobile devices opens up a new range of teaching–learning strategies in different agricultural engineering degrees. This article presents an augmented reality tool that allows for improved spatial viewing for students who have certain difficulties with viewing graphic representations of agronomic systems and devices. This tool is known as ARTID (Augmented Reality for Teaching, Innovation and Design) and consists in a free-access mobile application for devices using the Android operating system. The proposed method provides each exploded drawing or overall drawing with a QR code that can be used by students to view their 3D models by augmented reality in their own mobile devices. An evaluation experience was carried out to assess the validity of the tool on different devices and the acceptance and satisfaction level of this kind of resources in subjects of graphic expression in engineering. Finally, an example of application in the agronomic domain is provided by the 3D virtual model of portable ferticontrol equipment that comprises the different structures and tanks, which, if viewed by conventional graphical representations, may entail a certain level of difficulty. Thanks to this tool, reality can be merged with the virtual world to help favour the understanding of certain concepts and to increase student motivation in agronomy studies.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


2014 ◽  
Vol 3 (2) ◽  
pp. 19-34 ◽  
Author(s):  
Maria Antonia Brovelli ◽  
Marco Minghini ◽  
Giorgio Zamboni

The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Volunteered Geographic Information (VGI) systems. The purpose of the study is to investigate the extension of VGI applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension by means of virtual globes. Inspired by the visionary idea of Digital Earth, virtual globes are changing the way people approach to geographic information on the Web. Unlike the 2D visualization typical of Geographic Information Systems (GIS), virtual globes offer multi-dimensional, fully-realistic content visualization which allows for a much richer user experience. The proposed system should couple a powerful 3D visualization with an increase of public participation thanks to a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The participative application, built using the open source NASA World Wind virtual globe, is focused on the cultural and tourism heritage of Como city, located in Northern Italy. Users can create and manage customized projects and populate a catalogue of cartographic layers which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged data, which come from user field-surveys performed through mobile devices in order to report POIs (Points Of Interest). Users can also extend POIs information adding more textual and multimedia contexts (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.


Sign in / Sign up

Export Citation Format

Share Document