scholarly journals Augmented Reality Implementations in Stomatology

2019 ◽  
Vol 9 (14) ◽  
pp. 2929 ◽  
Author(s):  
Aleš Procházka ◽  
Tatjana Dostálová ◽  
Magdaléna Kašparová ◽  
Oldřich Vyšata ◽  
Hana Charvátová ◽  
...  

Augmented reality has a wide range of applications in many areas that can extend the study of real objects into the digital world, including stomatology. Real dental objects that were previously examined using their plaster casts are often replaced by their digital models or three-dimensional (3D) prints in the cyber-physical world. This paper reviews a selection of digital methods that have been applied in dentistry, including the use of intra-oral scanning technology for data acquisition and evaluation of fundamental features of dental arches. The methodology includes the use of digital filters and morphological operations for spatial objects analysis, their registration, and evaluation of changes during the treatment of specific disorders. The results include 3D models of selected dental arch objects, which allow a comparison of their shape and position during repeated observations. The proposed methods present digital alternatives to the use of plaster casts for semiautomatic evaluation of dental arch measures. This paper describes some of the advantages of 3D digital technology replacing real world elements and plaster cast dental models in many areas of classical stomatology.

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Jessica Carlina

Jajanan Pasar is a term for Indonesian traditional snacks, a part of Indonesian culture that has been forgotten by the young generation. Three-dimensional (3D) animation and Augmented Reality (AR) can be used as a medium for introducing this culture to children aged 4 to 6. Because, in AR, visual between real and digital world can be altered, so the visual of 3D models can be enjoyed from various sides. This study focuses on 3D visualization for AR that packaged in 5 set of puzzles. Each piece has an illustration of the ingredients for making 5 kinds of Jajanan Pasar, after all, puzzle pieces of each set get arranged, a new 3D model of traditional snacks will be appeared. The data was collected using literature and existing studies method. The purpose of this study is to create an optimal 3D visualization for AR that will be applicated for mobile devices. Conclusion from this project are the polygon count and target marker’s quality, affect the appearance of the 3D model in AR form.


Author(s):  
Luis Marques ◽  
Josep Roca

The creation of 3D models of urban elements is extremely relevant for urbanists constituting digital archives and being especially useful for enriching maps and databases or reconstructing and analyzing objects/areas through time, building/recreating scenarios and implementing intuitive methods of interaction. The widespread data available online offer new opportunities to generate realistic 3D models without the need to go physically to the place. This chapter aims to demonstrate the potential 3D modeling and visualization/interaction of urban elements in the city for multiple purposes, and it is organized in four main topics: The first deals with the theoretical framework regarding the bases of the human perception of the spatial environment and the importance of 3D modelling. The second and third deal with technical procedures on terrestrial/aerial data acquisition and demonstrate alternatively data gathered online to generate 3D models for the visualization of urban elements of the city, and the fourth introduces 3D model visualization within an augmented reality environment.


2004 ◽  
Vol 13 (6) ◽  
pp. 692-707 ◽  
Author(s):  
Sara Keren ◽  
Ilan Shimshoni ◽  
Ayellet Tal

This paper discusses the problem of inserting 3D models into a single image. The main focus of the paper is on the accurate recovery of the camera's parameters, so that 3D models can be inserted in the “correct” position and orientation. The paper addresses two issues. The first is an automatic extraction of the principal vanishing points from an image. The second is a theoretical and an experimental analysis of the errors. To test the concept, a system that “plants” virtual 3D objects in the image was implemented. It was tested on many indoor augmented-reality scenes. Our analysis and experiments have shown that errors in the placement of the objects are unnoticeable.


Author(s):  
Thomas D. Hedberg ◽  
Sylvere Krima ◽  
Jaime A. Camelio

Exchange and reuse of three-dimensional (3D) product models are hampered by the absence of trust in product-lifecycle data quality. The root cause of the missing trust is years of “silo” functions (e.g., engineering, manufacturing, and quality assurance) using independent and disconnected processes. Those disconnected processes result in data exchanges that do not contain all of the required information for each downstream lifecycle process, which inhibits the reuse of product data and results in duplicate data. The X.509 standard, maintained by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), was first issued in 1988. Although originally intended as the authentication framework for the X.500 series for electronic directory services, the X.509 framework is used in a wide range of implementations outside the originally intended paradigm. These implementations range from encrypting websites to software-code signing, yet X.509 certificate use has not widely penetrated engineering and product realms. Our approach is not trying to provide security mechanisms, but equally as important, our method aims to provide insight into what is happening with product data to support trusting the data. This paper provides a review of the use of X.509 certificates and proposes a solution for embedding X.509 digital certificates in 3D models for authentication, authorization, and traceability of product data. This paper also describes an application within the aerospace domain. Finally, the paper draws conclusions and provides recommendations for further research into using X.509 certificates in product lifecycle management (PLM) workflows to enable a product lifecycle of trust.


2018 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Jaime Santamarta Martínez ◽  
Javier Mas Domínguez

ResumenLa metodología BIM (Building Information Modelling), ampliamente implantada en el sector de la edificación y de la arquitectura, ha transformado la manera de desarrollar tanto los proyectos como las obras de construcción. Si bien la esencia de esta metodología se basa en la generación de un modelo tridimensional, la visualización de éste a través de dispositivos bidimensionales hace que la experiencia e interacción con el modelo no sea plena. Es por ello que la aparición en el mercado de nuevas tecnologías como la realidad virtual y la realidad aumentada, abren un amplio abanico de posibilidades ligadas al sector de la construcción. En este sentido, en Acciona Ingeniería se ha desarrollado un proyecto piloto en colaboración con Trimble y Microsoft donde a partir de un modelo BIM se ha creado una realidad aumentada basada en hologramas, que permitan recrear una simulación aplicada a la construcciónAbstractThe BIM (Building Information Modeling) methodology, widely implemented in the building and architecture sector, has transformed the way to develop both projects and construction works. Although the essence of this methodology is based on the generation of a three-dimensional model, the visualization of it through two-dimensional devices means that the experience and interaction with the model is not complete. That is why the appearance in the market of new technologies such as virtual reality and augmented reality, open a wide range of possibilities linked to the construction sector. In this sense, Acciona Engineering has developed a pilot project in collaboration with Trimble and Microsoft where, based on a BIM model, an augmented reality based on holograms has been created, allowing to recreate a simulation applied to construction


Author(s):  
I.-C. Lee ◽  
F. Tsai

A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. <br><br> In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. <br><br> The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicole Wake ◽  
Andrew B. Rosenkrantz ◽  
William C. Huang ◽  
James S. Wysock ◽  
Samir S. Taneja ◽  
...  

AbstractAugmented reality (AR) and virtual reality (VR) are burgeoning technologies that have the potential to greatly enhance patient care. Visualizing patient-specific three-dimensional (3D) imaging data in these enhanced virtual environments may improve surgeons’ understanding of anatomy and surgical pathology, thereby allowing for improved surgical planning, superior intra-operative guidance, and ultimately improved patient care. It is important that radiologists are familiar with these technologies, especially since the number of institutions utilizing VR and AR is increasing. This article gives an overview of AR and VR and describes the workflow required to create anatomical 3D models for use in AR using the Microsoft HoloLens device. Case examples in urologic oncology (prostate cancer and renal cancer) are provided which depict how AR has been used to guide surgery at our institution.


2020 ◽  
Vol 10 (18) ◽  
pp. 6462
Author(s):  
Adithya Balasubramanyam ◽  
Ashok Kumar Patil ◽  
Bharatesh Chakravarthi ◽  
Jae Yeong Ryu ◽  
Young Ho Chai

Understanding and differentiating subtle human motion over time as sequential data is challenging. We propose Motion-sphere, which is a novel trajectory-based visualization technique, to represent human motion on a unit sphere. Motion-sphere adopts a two-fold approach for human motion visualization, namely a three-dimensional (3D) avatar to reconstruct the target motion and an interactive 3D unit sphere, that enables users to perceive subtle human motion as swing trajectories and color-coded miniature 3D models for twist. This also allows for the simultaneous visual comparison of two motions. Therefore, the technique is applicable in a wide range of applications, including rehabilitation, choreography, and physical fitness training. The current work validates the effectiveness of the proposed work with a user study in comparison with existing motion visualization methods. Our study’s findings show that Motion-sphere is informative in terms of quantifying the swing and twist movements. The Motion-sphere is validated in threefold ways: validation of motion reconstruction on the avatar, accuracy of swing, twist, and speed visualization, and the usability and learnability of the Motion-sphere. Multiple range of motions from an online open database are selectively chosen, such that all joint segments are covered. In all fronts, Motion-sphere fares well. Visualization on the 3D unit sphere and the reconstructed 3D avatar make it intuitive to understand the nature of human motion.


2014 ◽  
Vol 1078 ◽  
pp. 341-344
Author(s):  
Ji Chang Long ◽  
Wei Hua Ma ◽  
Chun Lin Shen

Based on the technology of OpenGL and DirectX Wrapper, this paper designs and implements a new general method of data collection and display for the existing three-dimensional models using in multi-view 3D display system. Firstly, by using the technology of OpenGL/DirectX Wrapper, it obtains the application information such as the models, calls and associated data. Secondly, it sends the information to all rendering nodes. Then, according to the multi-view system projection array number and expected angle threshold parameter, each rendering node does the final adjustment and calibration on the obtained information sequentially for multi-view image rendering. Finally, each node transmits corresponding viewpoint image rendered by themselves to the projection equipment, and displays stereo images through 3D device synchronously. This method can be applied to all application programs based on OpenGL or DirectX Library. It is a general method for collecting and displaying multi-view 3D data sources. Experimental results show that this method is of high acquisition and rendering process, the image quality is the same as the source and stereoscopic displays strong. It has a wide range of applications and research value in the field of Engineering.


2019 ◽  
Vol 8 (2) ◽  
pp. 258-281
Author(s):  
Enguerrand Marique ◽  
Yseult Marique

Against a background of extensive literature examining how digital platforms are regulated through ‘soft’ mechanisms, this paper analyses the ‘hard law’ techniques, such as sanctions, which are also very much used on digital platforms to police undesirable behaviours. It illustrates the use of these sanctions, suggesting that it is possible to find three different categories of sanctions: sanctions that find their source in hard (international and domestic) law, sanctions that find their source in digital platforms' own normative production, and sanctions used in the course of disputes. Platform operators can have an intense power of norm-setting and sanctions, with a tendency to concentrate power within themselves or with unclear arrangements for dividing it across different entities. This can deeply affect individual freedoms. This paper suggests that the ways in which the power to set, decide and enforce sanctions is exercised in the digital space transform the public–private divide: the allocation of roles between sovereign public bodies and free private actors is reshaped to become ‘hybrid’ when it comes to enforcing rules and monitoring compliance through a wide range of sanctions on digital platforms. This paper frames the legitimacy questions arising from sanctions and suggests that the public–private divide may have to be bridged in order to locate a possible source of legitimacy. A future framework for assessing how platform operators set norms and ensure compliance through sanctions needs to start from individual users to see how best to protect their freedom when checks and balances around platforms' powers and sanctions are developed. These individual users are the ones who suffer from the economic, social and reputational consequences of sanctions in both the digital world and the physical world.


Sign in / Sign up

Export Citation Format

Share Document