Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products

2012 ◽  
Vol 2 (10) ◽  
pp. 369 ◽  
Author(s):  
Manju Pathak ◽  
Danik Martirosyan

Background: This study aimed to modify de Man Rogosa Sharpe culture medium (termed MRS) for selective cultivation of probiotics strain for the consumption by the strictly vegetarian human population. Vegetarian probiotic foods by definition must be free from all animal-derived ingredients. This not only includes the product ingredients but the probiotic inoculum as well. Probiotic starter cultures are traditionally grown and stored in media containing milk or meat-derived ingredients. The presence of these ingredients makes the probiotic cell concentrates unsuitable for use in vegetarian products and thus creates the need for a growth medium which is free from animal-derived ingredients. Present study investigated the growth of a strain of Lactobacillus lactis in MRS. The present invention relates in general to a bacterial culture media, and more specifically a complex microbial culture media, based on plant seed powder extract in place of animal extract for probiotic bacterial growth.Methods: Lactobacillus lactis, a probiotic, was grown in standard MRS culture medium as well as in our various test media (TM) containing various vegetal source in place of beef extract, yeast extract and peptone as in case of MRS. The inoculated culture mediums were incubated at 37C for 72 hours and growth of probiotic is recorded at regular intervals. The growth was recorded as Colony Forming Units (CFUs).Results: The best growth of probiotic is observed in TM 2. TM 2 is the leguminous seed extract. Starter culture mediums for probiotics or other bacteria primarily contain protein from animal source. The possibility of using vegetal protein from TM 2 extract in place of peptones and meat extract for the nitrogen supplementation of culture media for the growth of lactic acid bacteria has been demonstrated. Conclusion: The absolute vegetarian culture medium containing TM 2 is better than standard MRS for the growth of probiotics.Abbreviations: de Man Rogosa Sharpe (MRS), Colony Forming Units (CFU), test media (TM), National Dairy Research Institute (NDRI), Tamarind seed powder (TSP), solid-state fermentation (SSF), Lactobacillus casei Shirota (LcS)Keywords: probiotics, lactic acid bacteria, vegetarian

2013 ◽  
Vol 42 (6) ◽  
pp. 991-995 ◽  
Author(s):  
So-Lim Park ◽  
Sunhyun Park ◽  
Jieun Jang ◽  
Hye-Jung Yang ◽  
Sung-Won Moon ◽  
...  

Author(s):  
Ana Ruiz de la Bastida ◽  
Ángela Peirotén ◽  
Susana Langa ◽  
Juan Luis Arqués ◽  
José Mª. Landete

2007 ◽  
Vol 70 (9) ◽  
pp. 2155-2160 ◽  
Author(s):  
VINCENZO DEL PRETE ◽  
HECTOR RODRIGUEZ ◽  
ALFONSO V. CARRASCOSA ◽  
BLANCA de las RIVAS ◽  
EMILIA GARCIA-MORUNO ◽  
...  

A study was carried out to determine the in vitro interaction between ochratoxin A (OTA) and wine lactic acid bacteria (LAB). Fifteen strains belonging to five relevant oenological LAB species were grown in liquid synthetic culture medium containing OTA. The portion of OTA removed during the bacterial growth was 8 to 28%. The OTA removed from the supernatants was partially recovered (31 to 57%) from the bacterial pellet. Cell-free extracts of three representative strains were produced by disrupting cells in a French pressure cell. The ability of crude cell-free extracts to degrade OTA was studied. OTA was not degraded by cell-free extracts of wine LAB strains, and no degradation products of OTA were detected in the high-performance liquid chromatograms of the methanol extract of the bacterial pellet. On the basis of these results, we conclude that OTA removal by wine LAB is a cell-binding phenomenon. The chemistry and the molecular basis of OTA binding to wine LAB remains unknown.


2007 ◽  
Vol 70 (6) ◽  
pp. 1518-1522 ◽  
Author(s):  
V. B. SUÁREZ ◽  
M. L. CAPRA ◽  
M. RIVERA ◽  
J. A. REINHEIMER

The capacity of three phosphates to interrupt the lytic cycle of four specific autochthonal bacteriophages of lactic acid bacteria used as starters was assayed. The phosphates used (polyphosphates A and B and sodium tripolyphosphate–high solubility [TAS]) were selected on the basis of their capacity to sequester divalent cations, which are involved in the lytic cycle of certain bacteriophages. The assays were performed in culture media (deMan Rogosa Sharpe and Elliker broths) and reconstituted (10%, wt/vol) commercial skim milk to which phosphates had been added at concentrations of 0.1, 0.3, and 0.5% (wt/vol). Phosphate TAS was the most inhibitory one, since it was able to inhibit the lytic cycle of all bacteriophages studied, in both broths and milk. In broth, polyphosphates A and B inhibited the lytic cycle of only two bacteriophages at the maximal concentration used (0.5%), whereas in milk, they were not capable of maintaining the same inhibitory effect.


2007 ◽  
Vol 74 (4) ◽  
pp. 387-391 ◽  
Author(s):  
Maria BT Ortolani ◽  
Gabriela N Viçosa ◽  
Vanerli Beloti ◽  
Luís A Nero

This study aimed to compare Petrifilm™ Aerobic Count (AC) plates and the conventional pour plate methodology using de Mann-Rogosa-Sharpe (MRS), Kang-Fung (KF) and Kang-Fung-Sol (KFS) culture media for screening and enumeration of lactic acid bacteria (LAB) in milk. Suspensions of 10 LAB species in reconstituted powder skim milk and 30 raw milk samples, without experimental inoculation, were tested. For selective enumeration, all samples were previously diluted in MRS, KF and KFS broths and then plated in Petrifilm™ AC and conventional pour plate methodology, using the same culture media with added agar. All plates were incubated at 37°C for 48 h in anaerobic conditions. Differences in the counts were observed only for raw milk samples using KFS in conventional methodology, when compared with the counts obtained from MRS and KF (P⩽0·05). The results showed excellent correlation indexes between both methodologies using the three culture media for LAB suspensions (r=0·97 for MRS, KF and KFS). For raw milk samples, the correlation indexes were excellent (r=0·97, for MRS) and good (r=0·84 for KF, and r=0·82 for KFS), showing some interference in Petrifilm™ AC when supplements were added, especially lactic acid. These results indicate the possibility of using Petrifilm™ AC plates for enumeration of LAB in milk, even with the use of selective supplements.


Author(s):  
Yuni Trisnawita ◽  
Jansen Silalahi ◽  
Siti Morin Sinaga

Objective: The aim of this study was to determine the effect of storage condition on viability of lactic acid bacteria (LAB) in probiotic product.Methods: Four different of probiotic products used were A (Lacto B), B (Rillus), C (Interlac), and D (Lacbon) containing single or mixed LAB. The product was stored at temperature of 4°C and 28°C for 28 days. Viability test of LAB was done by counting a number of colony bacteria that live on de man, Rogosa, and Sharpe Agar.Results: The results of the study showed that counts of the LAB colonies in product A were less at the label (5.04×107 cfu/sachet), whereas in products B, C, and D were matching with the label. Storage at a temperature of 28°C for 28 days showed significant loss on the viability of LAB in product C (p<0.05).Conclucion: Storage temperature affecting on viability of LAB in probiotic product where storage at temperature 4°C is higher than 28°C for 28 days.


2002 ◽  
Vol 65 (5) ◽  
pp. 828-833 ◽  
Author(s):  
TONY SAVARD ◽  
CAROLE BEAULIEU ◽  
ISABELLE BOUCHER ◽  
CLAUDE P. CHAMPAGNE

The antimicrobial properties of various chitosan-lactate polymers (ranging from 0.5 to 1.2 MDa in molecular weight) against two yeasts isolated from fermented vegetables and against three lactic acid bacteria from a mixed starter for sauerkraut on methylene blue agar (MBA) and in vegetable juice medium (VJM) were investigated. Chitosan-lactate reduced the growth of all microorganisms in solid (MBA) as well as in liquid (VJM) medium. In MBA, a concentration of 5 g/liter was needed to inhibit the growth of Saccharomyces bayanus, while 1 g/liter was sufficient to inhibit the growth of Saccharomyces unisporus. Lactic acid bacteria were also inhibited in this range of concentrations. The low-molecular-weightchitosan-lactateDP3 (0.5 kDa) was most efficient in solid medium (MBA), and inhibitory activities decreased with increasing hydrolysate lengths. In liquid medium (VJM), 0.5 g of chitosan-lactate per liter reduced the growth rates for both yeasts, but 10 g/liter was insufficient to prevent yeast growth. Intermediate-molecular-weight chitosan-lactate (5 kDa) was more efficient than chitosan of low molecular weight. Native chitosan (1.2 MDa) showed no inhibition in either medium. Microscopic examination of S. unisporus Y-42 after treatment with chitosan-lactate DP25 showed agglutination of a refractive substance on the entire cell wall, suggesting an interaction between chitosan and the cell wall. When chitosanase was added to the culture media containing chitosan-lactate, refractive substances could not be observed.


2011 ◽  
Vol 51 (7) ◽  
pp. 597 ◽  
Author(s):  
M. B. Ghali ◽  
P. T. Scott ◽  
G. A. Alhadrami ◽  
R. A. M. Al Jassim

The camel is emerging as a new and important animal in the Australian livestock industry. However, little is known regarding the microbial ecosystem of the gastrointestinal tract of this ruminant-like animal. This study was carried out to determine the diversity of lactic acid-producing and lactic acid-utilising bacteria in the foregut of the feral camel (Camelus dromedarius) in Australia. Putative lactic acid bacteria were isolated from the foregut contents of camels by culturing on De Man, Rogosa, Sharpe and lactic acid media. Identification of representative isolates was based on the analysis of 16S rRNA gene sequences. Fermentation end products of glucose (i.e. volatile fatty acids and lactate) were also measured in vitro. The key predominant bacteria identified in this study were closely related to Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Lachnospira pectinoschiza and Prevotella ruminicola. The main L-lactate producers were those isolates closely related to S. bovis, S. ruminantium and Lactococcus garvieae, while the efficient lactate utilisers were S. ruminantium-related isolates. D-lactate was produced by isolates closely related to either L. pectinoschiza or S. ruminantium. The predominant bacteria isolated and characterised in this study are identical and/or closely related to those typically found in true ruminants (e.g. S. ruminantium, B. fibrisolvens, S. bovis). In addition, some of the bacteria isolated represent novel species of Lachnospira and Clostridium in the context of lactic acid bacteria from a large herbivorous host. The results from this study have contributed to our understanding and provide opportunities to reduce foregut acidosis in the camel.


Sign in / Sign up

Export Citation Format

Share Document