Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

Author(s):  
Marina C. Vasco ◽  
Panagiota Polydoropoulou ◽  
Apostolos N. Chamos ◽  
Spiros G. Pantelakis

In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance.

PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


2011 ◽  
Vol 295-297 ◽  
pp. 2386-2389 ◽  
Author(s):  
Ren Hui Tian ◽  
Qiao Lin Ouyang ◽  
Qing Yuan Wang

In order to investigate the effect of plasma nitriding treatment on fatigue behavior of titanium alloys, very high cycle fatigue tests were carried out for Ti-6Al-4V alloy using an ultrasonic fatigue machine under load control conditions for stress ratios of R=-1 at frequency of ƒ=20KHz. Experiment results showed that plasma nitriding treatment played the principal role in the internal fatigue crack initiation. More importantly, plasma nitriding treatment had a detrimental effect on fatigue properties of the investigated Ti-6Al-4V alloy, and the fatigue strength of material after plasma nitriding treatment appeared to be significantly reduced about 17% over the untreated material.


Author(s):  
Melody Mojib ◽  
Rishi Pahuja ◽  
M. Ramulu ◽  
Dwayne Arola

Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.


1994 ◽  
Vol 364 ◽  
Author(s):  
Gang Li ◽  
Jian-Ting Guo ◽  
Zhong-Guang Wang

AbstractIn this investigation, the influence of second phase particles on high cycle fatigue behavior of Ni3Al alloy is studied. A single phase Ni3Al-B alloy and a Ni3Al-B/Zr alloy with a few second phase particles (Ni5Zr) at the grain boundaries are selected for investigation. High cycle fatigue tests at room temperature with R (minimum stress/maximum stress) 0.1 are conducted in air and at 30 Hz. The results show that the second phase particles are detrimental to high cycle fatigue resistance. It may be explained in terms of the second phase particles promoting fatigue crack initiation. The characteristics of fracture surfaces are examined by Scanning Electron Microscopy (SEM).


2015 ◽  
Vol 664 ◽  
pp. 33-46
Author(s):  
Antoine Blanche ◽  
Chong Wang ◽  
Ngoc Lam Phung ◽  
Nicolas Ranc ◽  
Véronique Favier ◽  
...  

This paper aims at a deeper understanding of microplastic mechanisms leading to crack initiation in ductile metals in Very High Cycle Fatigue (VHCF). Fatigue tests were conducted using an ultrasonic technique at loading frequency of 20 kHz. The microplastic mechanisms are revealed via observations of slip markings at the specimen surface and self-heating measurements due to intrinsic dissipation. Pure copper and Armco iron (which contains a very low amount of carbon) were investigated. Both are single-phase ductile materials but the crystallographic structure of copper is face-centered cubic while it is body centered cubic for Armco iron. A good correlation was found between slip markings initiation and dissipation for both materials. The dissipation for both materials is of the same order of magnitude but the location, the morphology and the evolution over cycles of slip markings were found different.


2012 ◽  
Vol 166-169 ◽  
pp. 2226-2233 ◽  
Author(s):  
Gang Zhao ◽  
Peng Pan ◽  
Jia Ru Qian ◽  
Jin Song Lin

The paper presents an experimental study on a new type viscoelastic damper, which is expected to have better energy dissipation capability. Tests on the dampers’ mechanical properties, including shear storage modulus, shear loss modulus, and loss factor, were conducted using reduced scale specimens, and took strain amplitude, loading frequency and ambient temperature as test parameters. Aging tests, low cycle and high cycle fatigue tests were also conducted. Particularly, the low cycle fatigue behavior under a strain of 300% and the basic mechanical behavior under strains of 300%-420% were investigated. Test results suggest that the dependency of the mechanical properties on frequency and temperature is small, the energy dissipation capacity is stable for both large and small displacement, and the damper reaches a strain of 420% without failure.


2013 ◽  
Vol 690-693 ◽  
pp. 1718-1722 ◽  
Author(s):  
Shi Yue Wang ◽  
Zhi Yu Wu ◽  
Xi Jie Yang ◽  
Zhao Ying Ren

Low cycle and high cycle fatigue tests of 35CrMo steel at different pretorsional angles were conducted and cyclic hardening and softening curves, hysteresis loops and S-N curves were obtained of 35CrMo steel after the torsional prestrain. Scanning electron microscopy (SEM) analysis was also made of the fatigue fracture. The results show that: 35CrMo steel features obvious cyclic softening with basically the same law and degree at different torsional prestrains. The area surrounded by the stress-strain hysteresis loop decreases with the increment of the pretorsional angle; the torsional prestain reduces the fatigue life of the materials.


2011 ◽  
Vol 462-463 ◽  
pp. 355-360
Author(s):  
You Shi Hong ◽  
Gui An Qian

In this paper, rotary bending fatigue tests for a structural steel were performed in laboratory air, fresh water and 3.5% NaCl aqueous solution, respectively, thus to investigate the influence of environmental media on the fatigue propensity of the steel, especially in high cycle and very-high-cycle fatigue regimes. The results show that the fatigue strength of the steel in water is remarkably degraded compared with the case tested in air, and that the fatigue strength in 3.5% NaCl solution is even lower than that tested in water. The fracture surfaces were examined to reveal fatigue crack initiation and propagation characteristics in air and aqueous environments.


Sign in / Sign up

Export Citation Format

Share Document