scholarly journals Dynamic strength analysis of the key components of the beam-type pumping unit with dynamic tracking balance

2021 ◽  
Vol 15 (57) ◽  
pp. 291-299
Author(s):  
Bo Wang

Aiming at the shortages of large reversing impact, high energy consumption and poor balance effect of conventional beam-type pumping unit, the design scheme of beam-type pumping unit with dynamic tracking balance is proposed. The load-displacement curves from on-site trial shows that pumping with dynamic tracking balance has a better balance effect, and a production and power efficiency. According to the designed structure, the dynamic responses of the beam and connecting rods are analyzed. The results show that the maximum Mises stresses in the beam and connecting rod are 36.96 MPa and 27.83 MPa, respectively. The key components of designed beam-type pumping unit with dynamic tracking balance meet the requirement of strength.

2011 ◽  
Vol 66-68 ◽  
pp. 471-476
Author(s):  
Juan Li ◽  
Hong Zhi Yang ◽  
Mei Han ◽  
Jin Chao Xu ◽  
Xiao Dong Li ◽  
...  

International tension between energy supply and demand boost developments of energy-saving industry. Structure drawbacks of four linkage bar of the conventional beam pumping unit in oil field artificial lift led to the study of a single crank flexible pumping unit. Because of beam pumping unit issues, such as many energy transfer links, high energy consumption and investment, and so on, the single crank flexible pumping unit made the flexible delivery instead of rigid, substantially reduce the energy transfer links, to reduce the weight of the load rod as a breakthrough to achieve light and compact oil production ground equipment, while minimizing energy consumption, increased functionality, lower investment and overall cost. Field tests show that significant energy savings are found in the single crank flexible pumping unit, which is worth of promoting.


2019 ◽  
Vol 105 ◽  
pp. 313-320 ◽  
Author(s):  
H. Ding ◽  
J.F. Xie ◽  
Z.Q. Bai ◽  
Y. Li ◽  
Y. Long ◽  
...  

1993 ◽  
Vol 28 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Suzuki ◽  
S. Miyahara ◽  
K. Takeishi

Gas-permeable film can separate air and water, and at the same time, let oxygen diffuse from the air to the water through the film. An oxygen supply method using this film was investigated for the purpose of reducing energy consumption for wastewater treatment. The oxygen transfer rate was measured for the cases with or without biofilm, which proved the high rate of oxygen transfer in the case with nitrifying biofilm which performed nitrification. When the Gas-permeable film with nitrifying biofilm was applied to the treatment of wastewater, denitrifying biofilm formed on the nitrifying biofilm, and simultaneous nitrification and denitrification occurred, resulting in the high rate of organic matter and T-N removal (7 gTOC/m2/d and 4 gT-N/m2/d, respectively). However, periodic sloughing of the denitrifying biofilm was needed to keep the oxygen transfer rate high. Energy consumption of the process using the film in the form of tubes was estimated to be less than 40% of that of the activated sludge process.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


2013 ◽  
Vol 423-426 ◽  
pp. 667-673 ◽  
Author(s):  
Fan Wen Xin ◽  
Zhi Qiang Xu ◽  
Ya Nan Tu ◽  
Wei Yang ◽  
Xiang Yu Han ◽  
...  

For solving the problems of high energy consumption and high capacity of water-absorption, microwave dehydration technology of lignite was studied in this paper. A self-developed microwave system was used for the experiment on dehydration of lignite from eastern Inner Mongolia. It was proved that the condition of moisture migration was improved and microwave dehydration had a unique mechanism. By analyzing the effects of microwave powers, coal particle sizes, and lignite qualities on drying characteristics, it was found that the moisture decreased when the microwave power increased. it was found that the higher the power was, the faster the moisture decreased; the smaller the particle size was, the faster the moisture decreased; the less the lignite was, the faster the moisture decreased. Through the scanning electron microscope analysis, it was concluded that microwave had no significant effect on the smooth particles, and the fibrous particles and clusters particles tended to be smooth under the effect of microwave. Therefore, the interface of lignite was relatively stable, and not easy to reabsorb water after microwave.


2014 ◽  
Vol 912-914 ◽  
pp. 483-485
Author(s):  
Chen Rong ◽  
David Chan

This paper introduce the basic characteristics of LIFEHOPE Military Fire Blanket, as for independent intellectual property rights new material, we use it is heat insulation, heat preservation to save energy for glass furnace etc. Meanwhile we will explain and put forward the meaning of application of LIFEHOPE military fire Blanket for high energy consumption and heavy pollution industry and enterprise.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 198
Author(s):  
Sabrina Bochicchio ◽  
Gaetano Lamberti ◽  
Anna Angela Barba

Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.


Nature ◽  
1978 ◽  
Vol 273 (5664) ◽  
pp. 587-587
Author(s):  
L. G. BROOKES

1994 ◽  
Vol 29 (10-11) ◽  
pp. 1-11 ◽  
Author(s):  
M. Boller ◽  
W. Gujer ◽  
M. Tschui

The variables affecting nitrification in biofilms are identified on a theoretical basis. The influence of various design and operational parameters which affect the resulting substance fluxes into and out of the biofilm and the biomass activity regarding nitrification are illustrated with the help of experimental investigations with plastic media trickling filters, rotating biological contactors and different aerated biofilters. The results of experiments with these systems in tertiary nitrification applications reveal process limitations and technical measures to enhance nitrification performance in each system. In a case study, a comparison between the different biofilm processes and activated sludge alternatives showed that biofilm systems may lead to remarkably smaller reactor volumes, but high energy consumption due to unfavorable oxygen utilization.


Sign in / Sign up

Export Citation Format

Share Document