scholarly journals Periodic homogenization and damage evolution in RVE composite material with inclusion

2021 ◽  
Vol 15 (58) ◽  
pp. 319-343
Author(s):  
Karim Benyahi ◽  
Youcef Bouafia ◽  
Mohand Said Kachi ◽  
Sarah Benakli ◽  
Amel Hamri

This work deals with the coupling between a periodic homogenization procedure and a damage process occurring in a RVE of inclusion composite materials. We mainly seek on the one hand to determine the effective mechanical properties according to the different volume fractions and forms of inclusions for a composite with inclusions at the macroscopic level, and on the other hand to explore the rupture mechanisms that can take place at the microstructure level. To do this; the first step is to propose a periodic homogenization procedure to predict the homogenized mechanical characteristics of an inclusion composite. This homogenization procedure is applied to the theory based on finite element analysis by the Abaqus calculation code. The inclusions are modeled by a random object modeler, and the periodic homogenization method is implemented by python scripts. It is then a matter of introducing the damage into the problem of homogenization, that is to say; once the homogenized characteristics are assessed in the absence of the damage initiated by microcracks and micro cavitations, it is then possible to introduce damage models by a subroutine (Umat) in the Abaqus calculation code. The verifications carried out focused on RVE of composite materials with inclusions.

2013 ◽  
Vol 1535 ◽  
Author(s):  
Yuriy I. Dimitrienko ◽  
Alexandr P. Sokolov ◽  
Yulia V. Shpakova

ABSTRACTResults of finite element analysis of linked two and three scale levels tasks are presented. Fields of components of stress concentration tensor function for several models of unit cells of textile composite materials are presented too. Comparison of experimental and computational results of obtained effective properties was carried out and results of this research are introduced. The basis of this phenomenological approaches was made by Prof. N.S. Bahvalov and Prof. B.E. Pobedriya in 80's and finally this method was renovated by Prof. Yu.I. Dimitrienko at Bauman Moscow State Technical University at «Computational mathematics and mathematical physics» department. Computational procedures and program implementation was made using object-oriented design and C/C++ language by A.P. Sokolov. All computational results have been performed using new-developed distributed high-perfomance software system GCD. Multiscale homogenization method was applied for single macroscopic level of composite construction and several connected microscopic levels. The task of stress-strain determination of composite construction was stated automatically by means of automatically defined plan based on certain computational problems. Architecture of software system and finite-element subsystem were developed too. Several practically important tasks were solved and some of its results are attached.


The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Yao Ma ◽  
Chao Xin ◽  
Wei Zhang ◽  
Guangyong Jin

The application of laser fabrication of fiber-reinforced polymer (FRP) has an irreplaceable advantage. However, the effect of the plasma generated in laser fabrication on the damage process is rarely mentioned. In order to further study the law and mechanism of laser processing, the laser process was measured. CFRP and GFRP materials were damaged by a 1064 nm millisecond pulsed laser. Moreover, the propagation velocity and breakdown time of plasma plume were compared. The results show that GFRP is more vulnerable to breakdown than CFRP under the same conditions. In addition, the variation of plasma plume and material surface temperature with the number of pulses was also studied. The results show that the variation trend is correlated, that is, the singularities occur at the second pulse. Based on the analysis of experimental phenomena, this paper provides guidance for plasma phenomena in laser processing of composite materials.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Sachin Sunil Kelkar ◽  
Puneet Gautam ◽  
Shubham Sahai ◽  
Prajwal Sanjay Agrawal ◽  
R. Manoharan

AbstractThis study explains a coherent flow for designing, manufacturing, analyzing, and testing a tunable anti-roll bar system for a formula student racecar. The design process starts with the analytical calculation for roll stiffness using constraining parameters such as CG (Center of Gravity) height, total mass, and weight distribution in conjunction with suspension geometry. Then, the material selection for the design i.e. Aluminum 7075 T6 is made based on parameters such as density and modulus of rigidity. A MATLAB program is used to iterate deflection vs load for different stiffness and shaft diameter values. This is then checked with kinematic deflection values in Solidworks geometry. To validate with the material deflection, finite element analysis is performed on ANSYS workbench. Manufacturing accuracy for the job is checked using both static analysis in lab settings and using sensors on vehicles during on-track testing. The error percentage is found to be 4% between the target stiffness and the one obtained from static testing. Parameters such as moment arm length, shaft diameter and length, and deflection were determined and validated. This paper shows the importance of an anti-roll bar device to tune the roll stiffness of the car without interfering with the ride stiffness.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


2015 ◽  
Vol 39 (4) ◽  
pp. 819-828 ◽  
Author(s):  
Moises Jimenez ◽  
Jose Martinez ◽  
Ulises Figueroa

In this work, the load sequence effect is analyzed in fatigue test. One of the assumptions of the Miner’s rule is that the total damage is equal to the sum of the damages absorbed; however, different models have been proposed to take the effect of the load sequences under two load levels into account. To analyze this effect, a case study of a rear axle mounting bracket has been performed, analyzing six different sequences of three load levels, defined as Low, Medium and High. A Finite Element Analysis was also performed using MSC Tools. With these results and a series of test at constant amplitude, the component S-N curve was made. 24 tests at room temperature were performed in order to evaluate the damage process. It was found that, under a block of three load levels, the sequence of each block has an effect in the total amount of damage under the same number of cycles. With this information it is possible to improve the life prediction through the modification of the damage rule. The proposed model uses a factor which depends on the ultimate strength and yield point. This is an advantage over other approaches, as the other models need additional dynamic tests to obtain coefficients to perform the life prediction.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012033
Author(s):  
M Sadashiva ◽  
S Praveen Kumar ◽  
M K Yathish ◽  
V T Satish ◽  
MR Srinivasa ◽  
...  

Abstract The extensive applications of hybrid composite materials in the field of transportation and structural domine provide prominent advantages in the order of stiffness, strength even cost. However extend the advantages of hybrid campsites in several field such as aviation and marine even more additional properties should be inculcate in them. During production of such profitable composites poses some problems at time at decompose and processing. It’s better to develop environment friendly and reusable composites, bio hybrid composite materials such of the one. In this paper, focused on development of Eco-friendly hybrid bio composites with the ingredients of drumstick fibers, glass fiber along with polyester resin. This hybrid bio composites subjected to bending test and evaluate the characteristics of bending properties, this research evident that bending characteristics of hybrid composites with longitudinal fiber orientation better than transverse.


2021 ◽  
Author(s):  
Paulina Zenowicz

There is a need to design new, lighter aircraft structures, which has a direct impact on the safety and costs of aircraft maintenance. One of basic parts of an aircraft is ites landing gear, whose main functions are to enable taxiing, safe landing, take-off, and to assist the remainder of ground operations. Landing gear failures are usually related to metallurgy, processing, environment, design, and causes of overload. These are conditions that can be prevented using modern methods to calculate the strength of such a landing gear in various conditions. The paper presents stages of a simulation study of the fixed three-wheeled spring landing gear for an ultralight aircraft. Analysis of forces acting on the landing gear during drop test and their implementation by numerical computer methods allowed for the creation of a model in the CAD (Computer-Aided Design) tool and its FEA (Finite Element Analysis). These results were compared between a modeled classic spring landing gear and the one made of composite materials. The further goal of the research will be to build a drop test stand for a small landing gear used in airplanes and drones. This method has a significant impact on simplifying the design of the landing gear, its modeling, and optimization.


Sign in / Sign up

Export Citation Format

Share Document