LOAD SEQUENCE ANALYSIS IN FATIGUE LIFE PREDICTION

2015 ◽  
Vol 39 (4) ◽  
pp. 819-828 ◽  
Author(s):  
Moises Jimenez ◽  
Jose Martinez ◽  
Ulises Figueroa

In this work, the load sequence effect is analyzed in fatigue test. One of the assumptions of the Miner’s rule is that the total damage is equal to the sum of the damages absorbed; however, different models have been proposed to take the effect of the load sequences under two load levels into account. To analyze this effect, a case study of a rear axle mounting bracket has been performed, analyzing six different sequences of three load levels, defined as Low, Medium and High. A Finite Element Analysis was also performed using MSC Tools. With these results and a series of test at constant amplitude, the component S-N curve was made. 24 tests at room temperature were performed in order to evaluate the damage process. It was found that, under a block of three load levels, the sequence of each block has an effect in the total amount of damage under the same number of cycles. With this information it is possible to improve the life prediction through the modification of the damage rule. The proposed model uses a factor which depends on the ultimate strength and yield point. This is an advantage over other approaches, as the other models need additional dynamic tests to obtain coefficients to perform the life prediction.

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199530
Author(s):  
Bixiong Huang ◽  
Shuci Wang ◽  
Shuanglong Geng ◽  
Xintian Liu

To more accurately predict the fatigue life of components under the action of random loads, it is necessary to explore the influence of the interaction between the load sequence and the load on the life prediction. Based on the Manson-Halford method and Corten-Dolan model, this paper establishes a fatigue cumulative damage model that takes into account both the load order and the interaction between loads, and also takes into account the loads near the fatigue limit. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. Comparing the calculation results of the proposed model with the results of Palmgren Miner, Manson-Halford method, and Corten-Dolan model, it is found that the fatigue damage model established can reasonably predict the fatigue life of parts. Comparison and verification of examples further prove the accuracy and reliability of the proposed model.


Author(s):  
Wasim Tarar ◽  
Onome Scott-Emuakpor ◽  
M.-H. Herman Shen ◽  
Tommy George ◽  
Charles Cross

An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. The final output of this finite element analysis is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tinggui Chen ◽  
Shiwen Wu ◽  
Jianjun Yang ◽  
Guodong Cong ◽  
Gongfa Li

It is common that many roads in disaster areas are damaged and obstructed after sudden-onset disasters. The phenomenon often comes with escalated traffic deterioration that raises the time and cost of emergency supply scheduling. Fortunately, repairing road network will shorten the time of in-transit distribution. In this paper, according to the characteristics of emergency supplies distribution, an emergency supply scheduling model based on multiple warehouses and stricken locations is constructed to deal with the failure of part of road networks in the early postdisaster phase. The detailed process is as follows. When part of the road networks fail, we firstly determine whether to repair the damaged road networks, and then a model of reliable emergency supply scheduling based on bi-level programming is proposed. Subsequently, an improved artificial bee colony algorithm is presented to solve the problem mentioned above. Finally, through a case study, the effectiveness and efficiency of the proposed model and algorithm are verified.


Author(s):  
Yu Zang ◽  
Wei Shangguan ◽  
Baigen Cai ◽  
Huasheng Wang ◽  
Michael. G. Pecht

2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


2021 ◽  
Vol 13 (11) ◽  
pp. 6109
Author(s):  
Joanne Lee Picknoll ◽  
Pieter Poot ◽  
Michael Renton

Habitat loss has reduced the available resources for apiarists and is a key driver of poor colony health, colony loss, and reduced honey yields. The biggest challenge for apiarists in the future will be meeting increasing demands for pollination services, honey, and other bee products with limited resources. Targeted landscape restoration focusing on high-value or high-yielding forage could ensure adequate floral resources are available to sustain the growing industry. Tools are currently needed to evaluate the likely productivity of potential sites for restoration and inform decisions about plant selections and arrangements and hive stocking rates, movements, and placements. We propose a new approach for designing sites for apiculture, centred on a model of honey production that predicts how changes to plant and hive decisions affect the resource supply, potential for bees to collect resources, consumption of resources by the colonies, and subsequently, amount of honey that may be produced. The proposed model is discussed with reference to existing models, and data input requirements are discussed with reference to an Australian case study area. We conclude that no existing model exactly meets the requirements of our proposed approach, but components of several existing models could be combined to achieve these needs.


Author(s):  
Shorya Awtar ◽  
Edip Sevincer

Over-constraint is an important concern in mechanism design because it can lead to a loss in desired mobility. In distributed-compliance flexure mechanisms, this problem is alleviated due to the phenomenon of elastic averaging, thus enabling performance-enhancing geometric arrangements that are otherwise unrealizable. The principle of elastic averaging is illustrated in this paper by means of a multi-beam parallelogram flexure mechanism. In a lumped-compliance configuration, this mechanism is prone to over-constraint in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear load-stiffening and elasto-kinematic effects in the constituent beams have an important role to play in the over-constraint and elastic averaging characteristics of this mechanism. Therefore, a parametric model that incorporates these nonlinearities is utilized in predicting the influence of a representative geometric imperfection on the primary motion stiffness of the mechanism. The proposed model utilizes a beam generalization so that varying degrees of distributed compliance are captured using a single geometric parameter.


Sign in / Sign up

Export Citation Format

Share Document