scholarly journals Hierarchical Optimization Model Based on V2G Technology

2021 ◽  
Author(s):  
Wei Luo ◽  
Xiaohu Zhu ◽  
Liansong Yu

Large-scale electric vehicle (EV) random access to the power grid, the load peak-valley difference will become larger, seriously affect the stable operation of the power grid. In this paper, a V2G based bi-level optimal scheduling model for EV charging and discharging is proposed. The upper model takes the minimum variance of the total load as the objective function, and the lower model takes the increase of user participation and the maximization of user revenue as the objective function. The multi-population genetic algorithm is used to analyze the model, and the results show that the model can not only smooth the load fluctuation, effectively reduce the load peak-valley difference, but also maximize the economic benefits of users participating in V2G service.

2013 ◽  
Vol 448-453 ◽  
pp. 2223-2227
Author(s):  
Jun Chuan Jia ◽  
Bing Zhao ◽  
Xu Zhi Luo

Due to their high inter-temporal variation and intermittence, large-scale integration of the new energies, such as wind power and photovoltaic power, will pose great challenges to the safe and stable operation of power system. Analysis on gird stability and adaptability before integrating the new energy should be made. The paper investigates all kinds of restrictions and assesses each constrained capacity from the perspective of steady-state and transient voltage, frequency stability, cross-section transmission limit and peak load regulating capacity, respectively. Then the comprehensive evaluation on the capability to accommodate new energy for a power grid is accomplished. Take a practical grid for example, its accommodation capacity for new energy is calculated based on the above-mentioned method, which provides a theoretical basis for the grid to accommodate new energy and planning and construction of new energy.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012083
Author(s):  
FengKai Lin ◽  
YanRong Li ◽  
YaWei Liu ◽  
LingXiao Chen

Abstract As a large, complex system with wide distribution and high real-time, the safe, stable and reliable operation of the power system is inseparable from the power automation system. In this paper, an in-depth study is conducted on the key issues of this solution in the process of software cross-platform integration around the EPRI graphic center method, combined with the power data interface standard. The dispatch center graphics system and the dispatch center power graphics application method are discussed in detail in the paper. In addition, the paper also explains the online calibration system for relay protection ratings with smart grid dispatching technology support system. The methods and sample systems in this paper have been practically applied in large scale power grid dispatching centers, providing a reliable guarantee for the safe and stable operation of the power grid.


2019 ◽  
Vol 79 ◽  
pp. 03017
Author(s):  
Mingyu Dong ◽  
Dezhi Li ◽  
Fenkai Chen ◽  
Meiyan Wang ◽  
Rongjun Chen ◽  
...  

With the development of smart power distribution technology in the future, a large range of power supply load (such as distributed wind power generation) will appear on the power receiving end. When distributed wind power is connected to the power grid on a large scale, it will have a certain impact on the safe and stable operation of the power grid. However, if the wind power output characteristics can be analyzed and the wind power output is properly regulated, the one-way flow of power from the distribution network to the user side will be broken, so that the future "network-load" has dual interaction characteristics based on response and substantial power exchange.


2013 ◽  
Vol 772 ◽  
pp. 640-645
Author(s):  
Hua Ling Han ◽  
Zhen Li ◽  
Tao Shi ◽  
Ning Chen

In order to realize electric power high voltage, large capacity, long distance transmission and regional power grid interconnection, dc transmission system is an important technical means, and it plays an important role for cross-regional given of new large-scale energy power generation. Based on large scale photovoltaic (PV) power generation access to the northwest power grid as the object, this article set up PV power station model, analysis the influence of large-scale PV power access to HVDC system under different PV station operating mode and the grid disturbance situation. At last this paper puts forward suggestions and measures to guarantee stable operation of large scale PV power generation access to the system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weiru Wang ◽  
Limeng Wang ◽  
Bo Zhu ◽  
Guoqing Li ◽  
Yechun Xin ◽  
...  

In order to fully study the working characteristics of large-scale power electronic devices in the field of renewable energy delivery, it is imperative to build digital and physical hybrid simulation platforms. A power interface algorithm based on damping impedance is proposed to improve the stability of DC power grid hybrid platforms. Firstly, according to the characteristics of the open-loop transfer function of the damping impedance method, the matching principle between damping impedance at the power interface and equivalent impedance of the physical simulation system is obtained. Secondly, the calculation method of the equivalent impedance of multi-type equipment on the physical side is proposed, and the impedance real-time matching under different working conditions is realized. In order to reduce the simulation error caused by interface delay, a DC voltage interface delay compensation method based on slope prediction is proposed, and a prediction compensation model is established. A digital and physical hybrid platform for a four-terminal flexible DC power grid with DC circuit breakers is built to verify the proposed interface algorithm. The simulation results show that the proposed interface algorithm can effectively compensate for the interface delay and ensure the stable operation of the platform under different conditions.


2021 ◽  
Vol 2121 (1) ◽  
pp. 012020
Author(s):  
Weidong Fang ◽  
Hao Lv ◽  
Yiting Jiang ◽  
Lingzhi Li

Abstract The development of new energy vehicles is an important measure to deal with the growing energy demand and climate change. Especially in recent years, with the support of national policies and the maturity of electric vehicles(EVs) related technologies, the number of EVs has increased explosively, and the situation is very good. However, it also means that a large number of charging loads will be connected to the power grid, which will put great pressure on the safe and stable operation of the power grid. Although there have been many studies on the impact of EVs integration into modern power grid, most of the EVs load models are based on probability function and lack accuracy. Therefore, starting with the actual operation data of EVs charging station, this paper studies the influence of a large number of EVs charging loads on the static voltage stability of power grid. It is found that the charging load of large-scale EVs is added to the power grid, which significantly reduces the stability of power grid voltage, especially at the place connected to the EVs load and far away from the balance node. In addition, when the charging station adopts the time-of-use(TOU) price strategy, it can effectively improve the voltage stability of the whole network.


2019 ◽  
Vol 9 (24) ◽  
pp. 5548
Author(s):  
Majid Mehrasa ◽  
Edris Pouresmaeil ◽  
Hamid Soltani ◽  
Frede Blaabjerg ◽  
Maria R. A. Calado ◽  
...  

This paper provides virtual inertia and mechanical power-based double synchronous controller (DSC) for power converters based on the d- and q-components of the converter current to assure the stable operation of the grid with the penetration of large-scale renewable energy resources (RERs). The DSC is projected based on emulating both the inertia and mechanical power variables of the synchronous generators (SGs), and its performance is compared with a non-synchronous controller (NSC) that is without these emulations. The main contributions of the DSC are providing a large margin of stability for the power grid with a wide area of low and high values of virtual inertia, also improving significantly power grid stability (PGS) with changing properly the embedded virtual variables of inertia, mechanical power, and also mechanical power error. Also, decoupling features of the proposed DSC in which both d and q components are completely involved with the characteristics of SGs as well as the relationship between the interfaced converter and dynamic models of SGs are other important contributions of the DSC over the existing control methods. Embedding some coefficients for the proposed DSC to show its robustness against the unknown intrinsic property of parameters is another contribution in this paper. Moreover, several transfer functions are achieved and analyzed that confirm a more stable performance of the emulated controller in comparison with the NSC for power-sharing characteristics. Simulation results confirm the superiority of the proposed DSC in comparison with other existing control techniques, e.g., the NSC techniques.


2019 ◽  
Vol 136 ◽  
pp. 02013
Author(s):  
Guizhou Ren ◽  
Fangqing Li ◽  
Gang Liu ◽  
JianXin Ren ◽  
Yudong Liu ◽  
...  

With the continuous consumption of fossil energy and non-renewable, countries all over the world pay more and more attention to the use of renewable energy, among which Denmark, Japan, Germany and so on are among the best. Based on the basic national conditions and the energy development situation of our country, the utilization of renewable energy in our country is also promoted to the national strategic position. Experience shows that large-scale renewable energy access to the power grid system can not only meet the electricity demand of industrialized countries. Moreover, the safe and stable operation of the power grid can be realized by advanced technical means. Through the analysis of some advanced technology and equipment research in the development and utilization of renewable energy in foreign power grid, in order to improve the repeatability of our country, The level of development and utilization of raw energy.


1997 ◽  
Vol 77 (03) ◽  
pp. 436-439 ◽  
Author(s):  
Armando Tripodi ◽  
Barbara Negri ◽  
Rogier M Bertina ◽  
Pier Mannuccio Mannucci

SummaryThe factor V (FV) mutation Q506 that causes resistance to activated protein C (APC) is the genetic defect associated most frequently with venous thrombosis. The laboratory diagnosis can be made by DNA analysis or by clotting tests that measure the degree of prolongation of plasma clotting time upon addition of APC. Home-made and commercial methods are available but no comparative evaluation of their diagnostic efficacy has so far been reported. Eighty frozen coded plasma samples from carriers and non-carriers of the FV: Q506 mutation, diagnosed by DNA analysis, were sent to 8 experienced laboratories that were asked to analyze these samples in blind with their own APC resistance tests. The APTT methods were highly variable in their capacity to discriminate between carriers and non-carriers but this capacity increased dramatically when samples were diluted with FV-deficient plasma before analysis, bringing the sensitivity and specificity of these tests to 100%. The best discrimination was obtained with methods in which fibrin formation is triggered by the addition of activated factor X or Russell viper venom. In conclusion, this study provides evidence that some coagulation tests are able to distinguish carriers of the FV: Q506 mutation from non-carriers as well as the DNA test. They are inexpensive and easy to perform. Their use in large-scale clinical trials should be of help to determine the medical and economic benefits of screening healthy individuals for the mutation before they are exposed to such risk factors for venous thrombosis as surgery, pregnancy and oral contraceptives.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Sign in / Sign up

Export Citation Format

Share Document