Dynamic similarity analysis for a piezo-electromechanical system

2020 ◽  
Vol 64 (1-4) ◽  
pp. 103-110
Author(s):  
Shuo Hou ◽  
Xing Tan ◽  
Jincheng He ◽  
Xi Deng ◽  
Chen Xi ◽  
...  

Most research about using piezoelectric stacks to suppress vibration of mechanical structures didn’t involve the similarity problem for the piezoelectric stacks. The goal of this paper is to investigate the dynamic similarity between a prototype piezo stack and a scaled up or down piezo stack, whilst discussing the feasibility of predicting the vibration of prototype structure which use the piezoelectric stacks for vibration control. To illustrate this problem concisely, a single-DOF system consists of a proof mass and a piezo stack shunted with a series RL circuit is considered. Firstly, the governing equation of such piezo-electromechanical system in frequency domain is derived. Next the dynamic similarity of prototype and model stack is analyzed by similitude theory. After that the scaling laws are derived. Finally, a numerical simulation and relative error analysis are given to demonstrate the scaling laws.

2017 ◽  
Vol 24 (3) ◽  
pp. 527-541 ◽  
Author(s):  
G Petrone ◽  
M Manfredonia ◽  
S De Rosa ◽  
F Franco

Similarity theory is a branch of engineering science that deals with establishing conditions of similarity among phenomena and is applied to various fields, such as structural engineering problems, vibration and impact. Tests and numerical simulation of scaled models are still a valuable design tool, whose purpose is to accurately predict the behaviour of large or small prototypes through scaling laws applied to the experimental and numerical results. The aim of this paper is to predict the behaviour of the complete and incomplete similarity of stiffened cylinders by applying distorted scaling laws of the models in similitude. The investigation is performed using models based on the finite element method within commercial software. Two classes of cylinders scaled, with different laws, and, hence, reproducing replicas (exact similitude) and avatars (distorted similitude) are investigated.


2019 ◽  
Vol 71 (3) ◽  
Author(s):  
Alessandro Casaburo ◽  
Giuseppe Petrone ◽  
Francesco Franco ◽  
Sergio De Rosa

Similitude theory allows engineers, through a set of tools known as similitude methods, to establish the necessary conditions to design a scaled (up or down) model of a full-scale prototype structure. In recent years, to overcome the obstacles associated with full-scale testing, such as cost and setup, research on similitude methods has grown and their application has expanded into many branches of engineering. The aim of this paper is to provide as comprehensive a review as possible about similitude methods applied to structural engineering and their limitations due to size effects, rate sensitivity phenomena, etc. After a brief historical introduction and a more in-depth analysis of the main methods, the paper focuses on similitude applications classified, first, by test article, then by engineering fields.


Author(s):  
Asad M. Sardar ◽  
William K. George

Generalized Fan Scaling Laws (GSFL) are derived for the scaling of fan performance. These follow from first principles using the Navier-Stokes equations appropriate to rotating and swirling flows. Not surprisingly, both Strouhal and Reynolds number similarity must be maintained. Thus for a geometrically similar family of fans, dynamic similarity is only possible if ΩD/U = constandUD/ν = const. If the second relation is solved for U and substituted into the first, it follows that full dynamic similarity is possible only if ΩD2/ν = const. This can be contrasted with the classical fan laws (CFSL) which for the same flow rate coefficient would imply that Q/ΩD3 (or U/ΩD) = const, implying that both fan size ratio and fan speed ratio are independent fan scaling parameters. Clearly for dynamic similarity to be maintained, the velocity and fan speed can not be varied independently (i.e. fan size and fan speed are not independent scaling parameters), contrary to the implications of the classical fan scaling laws. Further implications of the differences between the classical and generalized scaling laws for fan performance testing and design will be explored. Also several examples will be given in Part II as to how the generalized scaling laws can be applied in design practice.


Author(s):  
Zhongheng Guo ◽  
Lingyu Sun ◽  
Taikun Wang ◽  
Junmin Du ◽  
Han Li ◽  
...  

At the conceptual design phase of a large-scale underwater structure, a small-scale model in a water tank is often used for the experimental verification of kinematic principles and structural safety. However, a general scaling law for structure-fluid interaction (FSI) problems has not been established. In the present paper, the scaling laws for three typical FSI problems under the water, rigid body moves at a given kinematic equation or is driven by time-dependent fluids with given initial condition, as well as elastic-plastic body moves and then deforms subject to underwater impact loads, are investigated, respectively. First, the power laws for these three types of FSI problems were derived by dimensional analysis method. Then, the laws for the first two types were verified by numerical simulation. In addition, a multipurpose small-scale water sink test device was developed for numerical model updating. For the third type of problem, the dimensional analysis is no longer suitable due to its limitation on identifying the fluid pressure and structural stress, a simulation-based procedure for dynamics evaluation of large-scale structure was provided. The results show that, for some complex FSI problems, if small-scale prototype is tested safely, it doesn’t mean the full-scale product is also safe if both their pressure and stress are the main concerns, it needs further demonstration, at least by numerical simulation.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
D. O. Tcheutchoua Fossi ◽  
P. Woafo

The purpose of this paper is to study the dynamics of an electromechanical system consisting of a torsion-bar or two mechanical pumps activated by an electromotor. Oscillatory solutions showing the jump and hysteresis phenomena are obtained using the harmonic balance method and direct numerical simulation. Chaotic behavior is presented via the bifurcation diagrams and corresponding Lyapunov exponent. Some implications of the results on the applications of the devices are discussed.


2005 ◽  
Vol 128 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Yan Zeng ◽  
Thong-See Lee ◽  
Peng Yu ◽  
Partha Roy ◽  
Hong-Tong Low

Microchannel bioreactors have been used in many studies to manipulate and investigate the fluid microenvironment around cells. In this study, substrate concentrations and shear stresses at the base were computed from a three-dimensional numerical flow-model incorporating mass transport. Combined dimensionless parameters were developed from a simplified analysis. The numerical results of substrate concentration were well correlated by the combined parameters. The generalized results may find applications in design analysis of microchannel bioreactors. The mass transport and shear stress were related in a generalized result. Based on the generalized results and the condition of dynamic similarity, various means to isolate their respective effects on cells were considered.


1972 ◽  
Vol 6 (2) ◽  
pp. 111-114 ◽  
Author(s):  
M. LOWELL COLLIER

Sign in / Sign up

Export Citation Format

Share Document