Design of speed control system for intelligent sorting conveyor belt of coal gangue

Author(s):  
Guangsheng Chen ◽  
Minghui Zhao ◽  
Huadong Zou ◽  
Zehua Ma

With the development of technology, the application of intelligent coal gangue sorting is more and more favored by coal mining enterprises. The coal gangue intelligent sorting system has higher requirements on the coal conveyor belt. The traditional transmission system has the problems of slow speed response, unstable operation, high energy consumption and jitter in the process of speed change. Using PLC, touch screen, frequency converter, RS-485, sensors and so on, the speed control and speed monitoring system of belt transport mechanism is constructed. By analyzing the error law of the system speed control and using Numpy system analysis and calculation, speed pre-compensation can be made. Then by controling speed precision through the PID and monitoring display through the time-speed curve, the real-time automation gives an alarm for abnormal speed situation. According to the speed requirement of the intelligent sorting system of coal gangue, the system can quickly reach the predetermined speed value, and effectively eliminate the shaking phenomenon in the process of changing speed. The system has strong universality, easy maintenance, and stable speed control, which is conducive to improving the reliability and efficiency of the intelligent sorting system for coal gangue and reduceing transmission mechanism wear caused by dithering.

Respuestas ◽  
2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Edison Andrés Caicedo ◽  
Henry Alfonso Sepúlveda-Pacagui ◽  
Luis David Pabón-Fernández ◽  
Aldo Pardo-García ◽  
Jorge Luis Díaz-Rodríguez

This article presents the development of an algorithm for speed control of the induction motor by means of the DSP core microcontroller TMS320F28069M, which is in charge of performing the digital treatment of the voltage and current signals measured to estimate the speed of rotor and close the control loop. The algorithms consider the operating limits and the characteristics of the DSP, together with an interface that allows monitoring the estimated speed, and modifying the operating point and the constants of the PI controller, the controller output is assigned to an output of the DSP PWM_DAC which is connected to an ABB ACS800-U1 frequency converter in remote mode to carry out the motor speed change by means of a V / F control law.


Author(s):  
Guang Xia ◽  
Yan Xia ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.


1993 ◽  
Vol 28 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Suzuki ◽  
S. Miyahara ◽  
K. Takeishi

Gas-permeable film can separate air and water, and at the same time, let oxygen diffuse from the air to the water through the film. An oxygen supply method using this film was investigated for the purpose of reducing energy consumption for wastewater treatment. The oxygen transfer rate was measured for the cases with or without biofilm, which proved the high rate of oxygen transfer in the case with nitrifying biofilm which performed nitrification. When the Gas-permeable film with nitrifying biofilm was applied to the treatment of wastewater, denitrifying biofilm formed on the nitrifying biofilm, and simultaneous nitrification and denitrification occurred, resulting in the high rate of organic matter and T-N removal (7 gTOC/m2/d and 4 gT-N/m2/d, respectively). However, periodic sloughing of the denitrifying biofilm was needed to keep the oxygen transfer rate high. Energy consumption of the process using the film in the form of tubes was estimated to be less than 40% of that of the activated sludge process.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


2013 ◽  
Vol 423-426 ◽  
pp. 667-673 ◽  
Author(s):  
Fan Wen Xin ◽  
Zhi Qiang Xu ◽  
Ya Nan Tu ◽  
Wei Yang ◽  
Xiang Yu Han ◽  
...  

For solving the problems of high energy consumption and high capacity of water-absorption, microwave dehydration technology of lignite was studied in this paper. A self-developed microwave system was used for the experiment on dehydration of lignite from eastern Inner Mongolia. It was proved that the condition of moisture migration was improved and microwave dehydration had a unique mechanism. By analyzing the effects of microwave powers, coal particle sizes, and lignite qualities on drying characteristics, it was found that the moisture decreased when the microwave power increased. it was found that the higher the power was, the faster the moisture decreased; the smaller the particle size was, the faster the moisture decreased; the less the lignite was, the faster the moisture decreased. Through the scanning electron microscope analysis, it was concluded that microwave had no significant effect on the smooth particles, and the fibrous particles and clusters particles tended to be smooth under the effect of microwave. Therefore, the interface of lignite was relatively stable, and not easy to reabsorb water after microwave.


2014 ◽  
Vol 912-914 ◽  
pp. 483-485
Author(s):  
Chen Rong ◽  
David Chan

This paper introduce the basic characteristics of LIFEHOPE Military Fire Blanket, as for independent intellectual property rights new material, we use it is heat insulation, heat preservation to save energy for glass furnace etc. Meanwhile we will explain and put forward the meaning of application of LIFEHOPE military fire Blanket for high energy consumption and heavy pollution industry and enterprise.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 198
Author(s):  
Sabrina Bochicchio ◽  
Gaetano Lamberti ◽  
Anna Angela Barba

Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.


2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Jamal Abd Ali ◽  
M A Hannan ◽  
Azah Mohamed

Optimization techniques are increasingly used in research to improve the control of three-phase induction motor (TIM). Indirect field-oriented control (IFOC) scheme is employed to improve the efficiency and enhance the performance of variable speed control of TIM drives. The space vector pulse width modulation (SVPWM) technique is used for switching signals in a three-phase bridge inverter to minimize harmonics in the output signals of the inverter. In this paper, a novel scheme based on particle swarm optimization (PSO) algorithm is proposed to improve the variable speed control of IFOC in TIM. The PSO algorithm is used to search the best values of parameters of proportional-integral (PI) controller (proportional gain (kp) and integral gain (ki)) for each speed controller and voltage controller to improve the speed response for TIM. An optimal PI controller-based objective function is also used to tune and minimize the mean square error (MSE). Results of all tests verified the robustness of the PSO-PI controller for speed response in terms of damping capability, fast settling time, steady state error, and transient responses under different conditions of mechanical load and speed.


Nature ◽  
1978 ◽  
Vol 273 (5664) ◽  
pp. 587-587
Author(s):  
L. G. BROOKES

Sign in / Sign up

Export Citation Format

Share Document