Application of flexible friction nano-generator in human motion information acquisition

Author(s):  
Leilei Tian ◽  
Cunjun Xie ◽  
Ying Jin

Under the background of the wide application of intelligent wearable devices, the application of flexible friction nanogenerator in human motion information acquisition is studied. According to the actual needs of energy supply of wearable electronic devices and human motion information acquisition, a flexible friction nanogenerator was prepared by using polyester fiber nickel plated conductive cloth and room temperature vulcanized silica gel polymer as friction positive and negative materials for human motion information acquisition. Set relevant parameters for test. The output peaks of short-circuit current and open circuit voltage are 5 respectively μA and 50 V. The test shows that the output energy can drive the calculator and digital clock to work in real time, and can realize the collection of human motion information.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lingjie Xie ◽  
Xiaoping Chen ◽  
Zhen Wen ◽  
Yanqin Yang ◽  
Jihong Shi ◽  
...  

Abstract Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers. In this work, we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator (FST–TENG) based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer. Owing to the great robustness and continuous conductivity, the FST–TENGs demonstrate high stability, stretchability, and even tailorability. For a single device with ~ 6 cm in length and ~ 3 mm in diameter, the open-circuit voltage of ~ 59.7 V, transferred charge of ~ 23.7 nC, short-circuit current of ~ 2.67 μA and average power of ~ 2.13 μW can be obtained at 2.5 Hz. By knitting several FST–TENGs to be a fabric or a bracelet, it enables to harvest human motion energy and then to drive a wearable electronic device. Finally, it can also be woven on dorsum of glove to monitor the movements of gesture, which can recognize every single finger, different bending angle, and numbers of bent finger by analyzing voltage signals.


Author(s):  
Arshad Khan ◽  
Khalid Rahman ◽  
Shawkat Ali ◽  
Saleem Khan ◽  
Bo Wang ◽  
...  

Abstract Wearable electronic devices are evolving from current rigid configurations to flexible and ultimately stretchable structures. These emerging systems require soft circuits for connecting the various working units of the overall system. This paper presents fabrication of soft circuits by electrohydrodynamic (EHD) inkjet-printing technique. Multi-nozzle EHD printing head is employed for rapid fabrication of electric circuits on a wide set of materials, including glass substrate (rigid), flexible polyethylene terephthalate (PET) films, and stretchable thermoplastic polyurethane (TPU) films. To avoid the effects of substrate materials on the jettability, the proposed multi-nozzle head is equipped with integrated individual counter electrodes (electrodes are placed above the printing substrate). High-resolution circuits (50 ± 5 µm) with high electrical conductivity (0.6 Ω □−1) on soft substrate materials validate our well-controlled multi-nozzle EHD printing approach. The produced circuits showed excellent flexibility (bending radius ≈ 5 mm radius), high stretchability (strain ≈ 100%), and long-term mechanical stability (500 cycles at 30% strain). The concept is further demonstrated with a soft strain sensor based on a multi-nozzle EHD-printed circuit, employed for monitoring the human motion (finger bending), indicating the potential applications of these circuits in soft wearable electronic devices. Graphic Abstract


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 656 ◽  
Author(s):  
Zhumei Tian ◽  
Guicheng Shao ◽  
Qiong Zhang ◽  
Yanan Geng ◽  
Xi Chen

Triboelectric nanogenerators with the function of harvesting human motion energy have attracted wide attention. Here, we demonstrate a shared-electrode and nested-tube structure triboelectric nanogenerator (SNTN) for harvesting human motion energy. The design of the SNTN employs flexible silicone rubber as the negative friction material and Ni-coated polyester conductive textile as the positive friction material and the electrode material. The entire structure consists of an inner triboelectric unit and an outer triboelectric unit. The inner triboelectric unit is formed by a hollow inner tube and a hollow middle tube, while the hollow middle tube and a hollow outer tube constitute the outer triboelectric unit. The hollow middle tube is used as the shared tube, and the electrode in the middle tube is used as the shared electrode of the two triboelectric units. Our research demonstrates that the output performance of the SNTN was improved significantly compared with a single triboelectric unit due to the cooperation of the two triboelectric units. When the SNTN is pressed by 300 N external force, output open-circuit voltage of 180 V and output short-circuit current of 8.5 μA can be obtained. The output electrical energy can light up 31 light-emitting diodes (LEDs) connected serially (displaying “XZTC”) and can drive a digital clock after rectifying storage, which shows application prospects in the field of illuminating devices and portable electronics.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 613 ◽  
Author(s):  
Tao Chen ◽  
Qiongfeng Shi ◽  
Kunpu Li ◽  
Zhan Yang ◽  
Huicong Liu ◽  
...  

Triboelectric nanogenerator (TENG) is a promising technology because it can harvest energy from the environment to enable self-sustainable mobile and wearable electronic devices. In this work, we present a flexible touch pad capable of detecting the contact location of an object and generating substantial energy simultaneously based on the coupling of triboelectric effects and electrostatic induction. The touch pad consists of Polytetrafluoroethylene (PTFE) thin film, multiple Aluminum (Al) electrodes and Polyethylene terephthalate (PET) layers, which can be achieved through low cost, simplified and scalable fabrication process. Different from the conventional multi-pixel-based positioning sensor (i.e., large array of sensing elements and electrodes), the analogue method proposed here is used to implement the positioning function with only four electrodes. Position location can achieve a detecting resolution of as small as 1.3 mm (the size of locating layer is 7.5 cm × 7.5 cm). For the energy harvesting part, a multilayer structure is designed to provide higher current output. The open circuit voltage of the device is around 420 V and the short circuit current can reach up to 6.26 µA with current density of 0.25 µA/cm2. The maximum output power obtained is approximately 10 mW, which is 0.4 mW/cm2. The flexibility and significantly reduced number of electrodes enable the proposed touch pad to be readily integrated into portable electronic devices, such as intelligent robots, laptops, healthcare devices, and environmental surveys, etc.


2018 ◽  
Vol 211 ◽  
pp. 05004
Author(s):  
Jan Smilek ◽  
Zdenek Hadas

This paper deals with the experimental performance evaluation of the prototype of a novel inertial energy harvester based on Tusi couple mechanism. The harvester was developed as an autonomous power source for environments with very low frequency and magnitude of mechanical vibrations available. The experiments were conducted using human body during different activities as a source of mechanical excitation, with the prospect of using the harvester for powering up future wearable electronic devices. Four different locations on a single measurement specimen were picked for the harvester placement - back of the head, belt, wrist and ankle. Measurements in each location comprised of walking on a straight and level path at natural speed, walking up and down the stairs, jumping, running, and location-specific activities that were expected to provide significant output power. The measured average output power of the device with dimensions 50x50x20 mm on empirically selected 2 kΩ electrical load reached up to 6.5 mW, obtained with the device attached to the ankle while shaking the leg.


2016 ◽  
Vol E99.B (1) ◽  
pp. 186-191 ◽  
Author(s):  
Takeshi ISHIDA ◽  
Fengchao XIAO ◽  
Yoshio KAMI ◽  
Osamu FUJIWARA ◽  
Shuichi NITTA

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1500
Author(s):  
Songrui Wei ◽  
Xiaoqi Liao ◽  
Han Zhang ◽  
Jianhua Pang ◽  
Yan Zhou

Fluxgate magnetic sensors are especially important in detecting weak magnetic fields. The mechanism of a fluxgate magnetic sensor is based on Faraday’s law of electromagnetic induction. The structure of a fluxgate magnetic sensor mainly consists of excitation windings, core and sensing windings, similar to the structure of a transformer. To date, they have been applied to many fields such as geophysics and astro-observations, wearable electronic devices and non-destructive testing. In this review, we report the recent progress in both the basic research and applications of fluxgate magnetic sensors, especially in the past two years. Regarding the basic research, we focus on the progress in lowering the noise, better calibration methods and increasing the sensitivity. Concerning applications, we introduce recent work about fluxgate magnetometers on spacecraft, unmanned aerial vehicles, wearable electronic devices and defect detection in coiled tubing. Based on the above work, we hope that we can have a clearer prospect about the future research direction of fluxgate magnetic sensor.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Sign in / Sign up

Export Citation Format

Share Document