scholarly journals Classification of all-rounders in limited over cricket - a machine learning approach

2021 ◽  
Vol 6 (4) ◽  
pp. 295-306
Author(s):  
Ananda B. W. Manage ◽  
Ram C. Kafle ◽  
Danush K. Wijekularathna

In cricket, all-rounders play an important role. A good all-rounder should be able to contribute to the team by both bat and ball as needed. However, these players still have their dominant role by which we categorize them as batting all-rounders or bowling all-rounders. Current practice is to do so by mostly subjective methods. In this study, the authors have explored different machine learning techniques to classify all-rounders into bowling all-rounders or batting all-rounders based on their observed performance statistics. In particular, logistic regression, linear discriminant function, quadratic discriminant function, naïve Bayes, support vector machine, and random forest classification methods were explored. Evaluation of the performance of the classification methods was done using the metrics accuracy and area under the ROC curve. While all the six methods performed well, logistic regression, linear discriminant function, quadratic discriminant function, and support vector machine showed outstanding performance suggesting that these methods can be used to develop an automated classification rule to classify all-rounders in cricket. Given the rising popularity of cricket, and the increasing revenue generated by the sport, the use of such a prediction tool could be of tremendous benefit to decision-makers in cricket.


Author(s):  
Noviyanti Santoso ◽  
Wahyu Wibowo ◽  
Hilda Hikmawati

In the data mining, a class imbalance is a problematic issue to look for the solutions. It probably because machine learning is constructed by using algorithms with assuming the number of instances in each balanced class, so when using a class imbalance, it is possible that the prediction results are not appropriate. They are solutions offered to solve class imbalance issues, including oversampling, undersampling, and synthetic minority oversampling technique (SMOTE). Both oversampling and undersampling have its disadvantages, so SMOTE is an alternative to overcome it. By integrating SMOTE in the data mining classification method such as Naive Bayes, Support Vector Machine (SVM), and Random Forest (RF) is expected to improve the performance of accuracy. In this research, it was found that the data of SMOTE gave better accuracy than the original data. In addition to the three classification methods used, RF gives the highest average AUC, F-measure, and G-means score.



Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.



2020 ◽  
Vol 10 (15) ◽  
pp. 5047 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Danesh Zandi ◽  
Himan Shahabi ◽  
Kamran Chapi ◽  
Ataollah Shirzadi ◽  
...  

This paper aims to apply and compare the performance of the three machine learning algorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternating decision tree (ADTree)–to map landslide susceptibility along the mountainous road of the Salavat Abad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on field surveys, by recording the locations of the landslides by a global position System (GPS), Google Earth imagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioning factors, then tested these factors using the information gain ratio (IGR) technique. We checked the validity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC). We found that, although all three machine learning algorithms yielded excellent performance, the SVM algorithm (AUC = 0.984) slightly outperformed the BLR (AUC = 0.980), and ADTree (AUC = 0.977) algorithms. We observed that not only all three algorithms are useful and effective tools for identifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVM algorithm as a soft computing benchmark algorithm to check the performance of the models in future.



2004 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
I W. MANGKU

This paper is a survey study on estimation of the pro- bability of misclassifications in two-groups discriminant analysis using the linear discriminant function as the classification rule. Here we consider two groups of estimators, namely parametric esti- mators and empirical estimators. The results of some comparative studies on the performances of the considered estimators are also discussed.



2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms



2021 ◽  
Vol 11 (19) ◽  
pp. 9292
Author(s):  
Noman Islam ◽  
Asadullah Shaikh ◽  
Asma Qaiser ◽  
Yousef Asiri ◽  
Sultan Almakdi ◽  
...  

In recent years, the consumption of social media content to keep up with global news and to verify its authenticity has become a considerable challenge. Social media enables us to easily access news anywhere, anytime, but it also gives rise to the spread of fake news, thereby delivering false information. This also has a negative impact on society. Therefore, it is necessary to determine whether or not news spreading over social media is real. This will allow for confusion among social media users to be avoided, and it is important in ensuring positive social development. This paper proposes a novel solution by detecting the authenticity of news through natural language processing techniques. Specifically, this paper proposes a novel scheme comprising three steps, namely, stance detection, author credibility verification, and machine learning-based classification, to verify the authenticity of news. In the last stage of the proposed pipeline, several machine learning techniques are applied, such as decision trees, random forest, logistic regression, and support vector machine (SVM) algorithms. For this study, the fake news dataset was taken from Kaggle. The experimental results show an accuracy of 93.15%, precision of 92.65%, recall of 95.71%, and F1-score of 94.15% for the support vector machine algorithm. The SVM is better than the second best classifier, i.e., logistic regression, by 6.82%.



PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251490
Author(s):  
Henry W. Dong ◽  
Caitlin Mills ◽  
Robert T. Knight ◽  
Julia W. Y. Kam

Mind wandering is often characterized by attention oriented away from an external task towards our internal, self-generated thoughts. This universal phenomenon has been linked to numerous disruptive functional outcomes, including performance errors and negative affect. Despite its prevalence and impact, studies to date have yet to identify robust behavioral signatures, making unobtrusive, yet reliable detection of mind wandering a difficult but important task for future applications. Here we examined whether electrophysiological measures can be used in machine learning models to accurately predict mind wandering states. We recorded scalp EEG from participants as they performed an auditory target detection task and self-reported whether they were on task or mind wandering. We successfully classified attention states both within (person-dependent) and across (person-independent) individuals using event-related potential (ERP) measures. Non-linear and linear machine learning models detected mind wandering above-chance within subjects: support vector machine (AUC = 0.715) and logistic regression (AUC = 0.635). Importantly, these models also generalized across subjects: support vector machine (AUC = 0.613) and logistic regression (AUC = 0.609), suggesting we can reliably predict a given individual’s attention state based on ERP patterns observed in the group. This study is the first to demonstrate that machine learning models can generalize to “never-seen-before” individuals using electrophysiological measures, highlighting their potential for real-time prediction of covert attention states.



MATICS ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21-27
Author(s):  
Via Ardianto Nugroho ◽  
Derry Pramono Adi ◽  
Achmad Teguh Wibowo ◽  
MY Teguh Sulistyono ◽  
Agustinus Bimo Gumelar

Pada industri jasa pelayanan peti kemas, Terminal Nilam merupakan pelanggan dari PT. BIMA, yang secara khusus bergerak dibidang jasa perbaikan dan perawatan alat berat. Terminal ini menjadi sentral tempat untuk melakukan aktifitas bongkar muat peti kemas domestik yang memiliki empat buah container crane untuk melayani dua kapal. Proses perawatan alat berat seperti container crane yang selama ini beroperasi, agaknya kurang memperhatikan data pengelompokkan atau klasifikasi jenis perawatan yang dibutuhkan oleh alat berat tersebut. Di kemudian hari, alat berat dapat menunjukkan kinerja yang tidak maksimal bahkan dapat berujung pada kecelakaan kerja. Selain itu, kelalaian perawatan container crane juga dapat menyebabkan pembengkakan biaya perawatan lanjut. Target produksi bongkar muat dapat berkurang dan juga keterlambatan jadwal kapal sandar sangat mungkin terjadi. Metode pembelajaran menggunakan mesin atau biasa disebut dengan Machine Learning (ML), dengan mudah dapat melenyapkan kemungkinan-kemungkinan tersebut. ML dalam penelitian ini, kami rancang agar bekerja dengan mengidentifikasi lalu mengelompokkan jenis perawatan container crane yang sesuai, yaitu ringan atau berat. Metode ML yang pilih untuk digunakan dalam penelitian ini yaitu Random Forest, Support Vector Machine, k-Nearest Neighbor, Naïve Bayes, Logistic Regression, J48, dan Decision Tree. Penelitian ini menunjukkan keberhasilan ML model tree dalam melakukan pembelajaran jenis data perawatan container crane (numerik dan kategoris), dengan J48 menunjukkan performa terbaik dengan nilai akurasi dan nilai ROC-AUC mencapai 99,1%. Pertimbangan klasifikasi kami lakukan dengan mengacu kepada tanggal terakhir perawatan, hour meter, breakdown, shutdown, dan sparepart.



2021 ◽  
Vol 2096 (1) ◽  
pp. 012190
Author(s):  
E V Bunyaeva ◽  
I V Kuznetsov ◽  
Y V Ponomarchuk ◽  
P S Timosh

Abstract The paper considers comparative analysis results of the machine learning methods used for the gesture recognition based on the surface single-channel electromyography (sEMG) data. The data were processed using multilayer perceptron, support vector machine, decision tree ensemble (Random Forest) and logistic regression for the chosen four gesture types. The conclusion was derived on the analysis efficiency of these methods using commonly recommended accuracy metrics.



Sign in / Sign up

Export Citation Format

Share Document