alternating decision tree
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Alireza Arabameri ◽  
Peyman Yariyan ◽  
M Santosh

Abstract Land subsidence is a worldwide threat. In arid and semiarid land, groundwater depletion is the main factor that induce the subsidence and results in environmental damages, with high economic losses. To foresee and prevent the impact of land subsidence is necessary to develop accurated maps of the magnitude and evolution of the subsidences. Land subsidence susceptibility maps (LSSMs) provide one of the effective tools to manage vulnerable areas, and to reduce or prevent land subsidence. In this study, we used a new approach to improve Decision Stump Classification (DSC) performance and combine it with machine learning algorithms (MLAs) of Naive Bayes Tree (NBTree), J48 decision tree, alternating decision tree (ADTree), logistic model tree (LMT) and support vector machine (SVM) in land subsidence susceptibility mapping (LSSSM). We employ data from 94 subsidence locations, among which 70% were used to train learning hybrid models, and the other 30% were used for validation. In addition, the models’ performance was assessed by ROC-AUC, accuracy, sensitivity, specificity, odd ratio, root-mean-square error (RMSE), Kappa, frequency ratio and F-score techniques. A comparison of the results obtained from the different models, reveal that the new DSC-ADTree hybrid algorithm has the highest accuracy (AUC = 0.983) in preparing LSSSMs as compared to other learning models such as DSC-J48 (AUC = 0.976), DSC-NBTree (AUC = 0.959), DSC-LMT (AUC = 0.948), DSC-SVM (AUC = 0.939) and DSC (AUC = 0.911). The LSSSMs generated through the novel scientific approach presented in our study provide reliable tools for managing and reducing the risk of land subsidence.


2020 ◽  
Vol 10 (15) ◽  
pp. 5047 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Danesh Zandi ◽  
Himan Shahabi ◽  
Kamran Chapi ◽  
Ataollah Shirzadi ◽  
...  

This paper aims to apply and compare the performance of the three machine learning algorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternating decision tree (ADTree)–to map landslide susceptibility along the mountainous road of the Salavat Abad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on field surveys, by recording the locations of the landslides by a global position System (GPS), Google Earth imagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioning factors, then tested these factors using the information gain ratio (IGR) technique. We checked the validity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC). We found that, although all three machine learning algorithms yielded excellent performance, the SVM algorithm (AUC = 0.984) slightly outperformed the BLR (AUC = 0.980), and ADTree (AUC = 0.977) algorithms. We observed that not only all three algorithms are useful and effective tools for identifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVM algorithm as a soft computing benchmark algorithm to check the performance of the models in future.


CATENA ◽  
2020 ◽  
Vol 187 ◽  
pp. 104396 ◽  
Author(s):  
Yanli Wu ◽  
Yutian Ke ◽  
Zhuo Chen ◽  
Shouyun Liang ◽  
Hongliang Zhao ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 425 ◽  
Author(s):  
Wei Chen ◽  
Yang Li ◽  
Paraskevas Tsangaratos ◽  
Himan Shahabi ◽  
Ioanna Ilia ◽  
...  

This study presents a methodology for constructing groundwater spring potential maps by kernel logistic regression, (KLR), random forest (RF), and alternating decision tree (ADTree) models. The analysis was based on data concerning groundwater springs and fourteen explanatory factors (elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to streams, distance to roads, normalized difference vegetation index (NDVI), lithology, soil, and land use), which were divided into training and validation datasets. Ningtiaota region in the northern territory of Shaanxi Province, China, was considered as a test site. Frequency Ratio method was applied to provide to each factor’s class a coefficient weight, whereas the linear support vector machine method was used as a feature selection method to determine the optimal set of factors. The Receiver Operating Characteristic curve and the area under the curve (AUC) were used to evaluate the performance of each model using the training dataset, with the RF model providing the highest AUC value (0.909) followed by the KLR (0.877) and ADTree (0.812) models. The same performance pattern was estimated based on the validation dataset, with the RF model providing the highest AUC value (0.811) followed by the KLR (0.797) and ADTree (0.773) models. This study highlights that the artificial intelligence approach could be considered as a valid and accurate approach for groundwater spring potential zoning.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Alireza Arabameri ◽  
Wei Chen ◽  
Thomas Blaschke ◽  
John P. Tiefenbacher ◽  
Biswajeet Pradhan ◽  
...  

To more effectively prevent and manage the scourge of gully erosion in arid and semi-arid regions, we present a novel-ensemble intelligence approach—bagging-based alternating decision-tree classifier (bagging-ADTree)—and use it to model a landscape’s susceptibility to gully erosion based on 18 gully-erosion conditioning factors. The model’s goodness-of-fit and prediction performance are compared to three other machine learning algorithms (single alternating decision tree, rotational-forest-based alternating decision tree (RF-ADTree), and benchmark logistic regression). To achieve this, a gully-erosion inventory was created for the study area, the Chah Mousi watershed, Iran by combining archival records containing reports of gully erosion, remotely sensed data from Google Earth, and geolocated sites of gully head-cuts gathered in a field survey. A total of 119 gully head-cuts were identified and mapped. To train the models’ analysis and prediction capabilities, 83 head-cuts (70% of the total) and the corresponding measures of the conditioning factors were input into each model. The results from the models were validated using the data pertaining to the remaining 36 gully locations (30%). Next, the frequency ratio is used to identify which conditioning-factor classes have the strongest correlation with gully erosion. Using random-forest modeling, the relative importance of each of the conditioning factors was determined. Based on the random-forest results, the top eight factors in this study area are distance-to-road, drainage density, distance-to-stream, LU/LC, annual precipitation, topographic wetness index, NDVI, and elevation. Finally, based on goodness-of-fit and AUROC of the success rate curve (SRC) and prediction rate curve (PRC), the results indicate that the bagging-ADTree ensemble model had the best performance, with SRC (0.964) and PRC (0.978). RF-ADTree (SRC = 0.952 and PRC = 0.971), ADTree (SRC = 0.926 and PRC = 0.965), and LR (SRC = 0.867 and PRC = 0.870) were the subsequent best performers. The results also indicate that bagging and RF, as meta-classifiers, improved the performance of the ADTree model as a base classifier. The bagging-ADTree model’s results indicate that 24.28% of the study area is classified as having high and very high susceptibility to gully erosion. The new ensemble model accurately identified the areas that are susceptible to gully erosion based on the past patterns of formation, but it also provides highly accurate predictions of future gully development. The novel ensemble method introduced in this research is recommended for use to evaluate the patterns of gullying in arid and semi-arid environments and can effectively identify the most salient conditioning factors that promote the development and expansion of gullies in erosion-susceptible environments.


2019 ◽  
Vol 9 (7) ◽  
pp. 1288 ◽  
Author(s):  
Ahmet Demirpolat ◽  
Mehmet Das

Due to the poor thermal properties of conventional thermal fluids such as water, oil and ethylene glycol, small solid particles are added to these fluids to enhance heat transfer. Since the viscosity change determines the rheological behavior of a liquid, it is very important to examine the parameters affecting the viscosity. Since the experimental viscosity measurement is expensive and time-consuming, it is more practical to estimate this parameter. In this study, CuO (copper oxide) nanoparticles were produced and then Scanning Electron Microscope (SEM) images analyses of the produced particles were made. Nanofluids were obtained by using pure water, ethanol and ethylene glycol materials together with the produced nanoparticles and the viscosity values were calculated by experimental setups at different density and temperatures. For the viscosity values of nanofluids, predictive models were created by using different computational intelligence methods. Mean square error (MSE), root mean square error (RMSE) and mean absolute percentage error (MAPE) error analyses were used to determine the accuracy of the predictive models. The multilayer perceptron method, which has the least error value in computational methods, was chosen as the best predicting method. The multilayer perceptron method, with an average accuracy of 51%, performed better than the alternating decision tree method. As a result, the viscosity increased with the increase in the pH of the nanofluids produced by adding CuO nanoparticles and decreased with the increase in the temperature of the nanofluids. The importance of this study is to create a predictive model using computational intelligence methods for viscosity values calculated with different pH values.


Author(s):  
Angela Pimentel ◽  
Hugo Gamboa ◽  
Isa Maria Almeida ◽  
Pedro Matos ◽  
Rogério T. Ribeiro ◽  
...  

Heart diseases and stroke are the number one cause of death and disability among people with type 2 diabetes (T2D). Clinicians and health authorities for many years have expressed interest in identifying individuals at increased risk of coronary heart disease (CHD). Our main objective is to develop a prognostic workflow of CHD in T2D patients using a Holter dataset. This workflow development will be based on machine learning techniques by testing a variety of classifiers and subsequent selection of the best performing system. It will also assess the impact of feature selection and bootstrapping techniques over these systems. Among a variety of classifiers such as Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), Alternating Decision Tree (ADT), Random Tree (RT) and K-Nearest Neighbour (KNN), the best performing classifier is NB. We achieved an area under receiver operating characteristics curve (AUC) of 68,06% and 74,33% for a prognosis of 3 and 4 years, respectively.


Sign in / Sign up

Export Citation Format

Share Document