scholarly journals Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran

2020 ◽  
Vol 10 (15) ◽  
pp. 5047 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Danesh Zandi ◽  
Himan Shahabi ◽  
Kamran Chapi ◽  
Ataollah Shirzadi ◽  
...  

This paper aims to apply and compare the performance of the three machine learning algorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternating decision tree (ADTree)–to map landslide susceptibility along the mountainous road of the Salavat Abad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on field surveys, by recording the locations of the landslides by a global position System (GPS), Google Earth imagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioning factors, then tested these factors using the information gain ratio (IGR) technique. We checked the validity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC). We found that, although all three machine learning algorithms yielded excellent performance, the SVM algorithm (AUC = 0.984) slightly outperformed the BLR (AUC = 0.980), and ADTree (AUC = 0.977) algorithms. We observed that not only all three algorithms are useful and effective tools for identifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVM algorithm as a soft computing benchmark algorithm to check the performance of the models in future.

2021 ◽  
Vol 15 (23) ◽  
pp. 136-147
Author(s):  
Hajar A. Alharbi ◽  
Hessa I. Alshaya ◽  
Meshaiel M. Alsheail ◽  
Mukhlisah H. Koujan

The graduation projects (GP) are important because it reflects the academic profile and achievement of the students. For many years’ graduation projects are done by the information technology department students. Most of these projects have great value, and some were published in scientific journals and international conferences. However, these projects are stored in an archive room haphazardly and there is a very small part of it is a set of electronic PDF files stored on hard disk, which wastes time and effort and cannot benefit from it. However, there is no system to classify and store these projects in a good way that can benefit from them. In this paper, we reviewed some of the best machine learning algorithms to classify text “graduation projects”, support vector machine (SVM) algorithm, logistic regression (LR) algorithm, random forest (RF) algorithm, which can deal with an extremely small amount of dataset after comparing these algorithms based on accuracy. We choose the SVM algorithm to classify the projects. Besides, we will mention how to deal with a super small dataset and solve this problem.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


2019 ◽  
Vol 11 (21) ◽  
pp. 2548
Author(s):  
Dong Luo ◽  
Douglas G. Goodin ◽  
Marcellus M. Caldas

Disasters are an unpredictable way to change land use and land cover. Improving the accuracy of mapping a disaster area at different time is an essential step to analyze the relationship between human activity and environment. The goals of this study were to test the performance of different processing procedures and examine the effect of adding normalized difference vegetation index (NDVI) as an additional classification feature for mapping land cover changes due to a disaster. Using Landsat ETM+ and OLI images of the Bento Rodrigues mine tailing disaster area, we created two datasets, one with six bands, and the other one with six bands plus the NDVI. We used support vector machine (SVM) and decision tree (DT) algorithms to build classifier models and validated models performance using 10-fold cross-validation, resulting in accuracies higher than 90%. The processed results indicated that the accuracy could reach or exceed 80%, and the support vector machine had a better performance than the decision tree. We also calculated each land cover type’s sensitivity (true positive rate) and found that Agriculture, Forest and Mine sites had higher values but Bareland and Water had lower values. Then, we visualized land cover maps in 2000 and 2017 and found out the Mine sites areas have been expanded about twice of the size, but Forest decreased 12.43%. Our findings showed that it is feasible to create a training data pool and use machine learning algorithms to classify a different year’s Landsat products and NDVI can improve the vegetation covered land classification. Furthermore, this approach can provide a venue to analyze land pattern change in a disaster area over time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258788
Author(s):  
Sarra Ayouni ◽  
Fahima Hajjej ◽  
Mohamed Maddeh ◽  
Shaha Al-Otaibi

The educational research is increasingly emphasizing the potential of student engagement and its impact on performance, retention and persistence. This construct has emerged as an important paradigm in the higher education field for many decades. However, evaluating and predicting the student’s engagement level in an online environment remains a challenge. The purpose of this study is to suggest an intelligent predictive system that predicts the student’s engagement level and then provides the students with feedback to enhance their motivation and dedication. Three categories of students are defined depending on their engagement level (Not Engaged, Passively Engaged, and Actively Engaged). We applied three different machine-learning algorithms, namely Decision Tree, Support Vector Machine and Artificial Neural Network, to students’ activities recorded in Learning Management System reports. The results demonstrate that machine learning algorithms could predict the student’s engagement level. In addition, according to the performance metrics of the different algorithms, the Artificial Neural Network has a greater accuracy rate (85%) compared to the Support Vector Machine (80%) and Decision Tree (75%) classification techniques. Based on these results, the intelligent predictive system sends feedback to the students and alerts the instructor once a student’s engagement level decreases. The instructor can identify the students’ difficulties during the course and motivate them through e-mail reminders, course messages, or scheduling an online meeting.


MATICS ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21-27
Author(s):  
Via Ardianto Nugroho ◽  
Derry Pramono Adi ◽  
Achmad Teguh Wibowo ◽  
MY Teguh Sulistyono ◽  
Agustinus Bimo Gumelar

Pada industri jasa pelayanan peti kemas, Terminal Nilam merupakan pelanggan dari PT. BIMA, yang secara khusus bergerak dibidang jasa perbaikan dan perawatan alat berat. Terminal ini menjadi sentral tempat untuk melakukan aktifitas bongkar muat peti kemas domestik yang memiliki empat buah container crane untuk melayani dua kapal. Proses perawatan alat berat seperti container crane yang selama ini beroperasi, agaknya kurang memperhatikan data pengelompokkan atau klasifikasi jenis perawatan yang dibutuhkan oleh alat berat tersebut. Di kemudian hari, alat berat dapat menunjukkan kinerja yang tidak maksimal bahkan dapat berujung pada kecelakaan kerja. Selain itu, kelalaian perawatan container crane juga dapat menyebabkan pembengkakan biaya perawatan lanjut. Target produksi bongkar muat dapat berkurang dan juga keterlambatan jadwal kapal sandar sangat mungkin terjadi. Metode pembelajaran menggunakan mesin atau biasa disebut dengan Machine Learning (ML), dengan mudah dapat melenyapkan kemungkinan-kemungkinan tersebut. ML dalam penelitian ini, kami rancang agar bekerja dengan mengidentifikasi lalu mengelompokkan jenis perawatan container crane yang sesuai, yaitu ringan atau berat. Metode ML yang pilih untuk digunakan dalam penelitian ini yaitu Random Forest, Support Vector Machine, k-Nearest Neighbor, Naïve Bayes, Logistic Regression, J48, dan Decision Tree. Penelitian ini menunjukkan keberhasilan ML model tree dalam melakukan pembelajaran jenis data perawatan container crane (numerik dan kategoris), dengan J48 menunjukkan performa terbaik dengan nilai akurasi dan nilai ROC-AUC mencapai 99,1%. Pertimbangan klasifikasi kami lakukan dengan mengacu kepada tanggal terakhir perawatan, hour meter, breakdown, shutdown, dan sparepart.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012190
Author(s):  
E V Bunyaeva ◽  
I V Kuznetsov ◽  
Y V Ponomarchuk ◽  
P S Timosh

Abstract The paper considers comparative analysis results of the machine learning methods used for the gesture recognition based on the surface single-channel electromyography (sEMG) data. The data were processed using multilayer perceptron, support vector machine, decision tree ensemble (Random Forest) and logistic regression for the chosen four gesture types. The conclusion was derived on the analysis efficiency of these methods using commonly recommended accuracy metrics.


Author(s):  
Ms. Sarika Tyagi

Fake news always has been a problem. We, too, might have fallen for a false rumor at least once in our lifetime. Moreover, the fight against fake news over social networking media is intricate. Misinformation related to home remedies for COVID 19 that have not been verified, fake news for lockdown extension or release, casualties and damage in any riots, fake consultancies, and conspiracy were prevalent during the lockdown. Many Researchers have implemented several algorithms for the detection of Fake News. In this paper, we have used several past published research papers along with our research to compare the performances of three algorithms, i.e., Naive Bayes classifier, Logistic Regression, and Support Vector Machine. This provides an idea of the most practical and efficient algorithm, Support Vector Machine, that can be used for fake news detection.


2021 ◽  
Author(s):  
Meng Ji ◽  
Yanmeng Liu ◽  
Tianyong Hao

BACKGROUND Current health information understandability research uses medical readability formulas to assess the cognitive difficulty of health education resources. This is based on an implicit assumption that medical domain knowledge represented by uncommon words or jargon form the sole barriers to health information access among the public. Our study challenged this by showing that, for readers from non-English speaking backgrounds with higher education attainment, semantic features of English health texts that underpin the knowledge structure of English health texts, rather than medical jargon, can explain the cognitive accessibility of health materials among readers with better understanding of English health terms yet limited exposure to English-based health education environments and traditions. OBJECTIVE Our study explores multidimensional semantic features for developing machine learning algorithms to predict the perceived level of cognitive accessibility of English health materials on health risks and diseases for young adults enrolled in Australian tertiary institutes. We compared algorithms to evaluate the cognitive accessibility of health information for nonnative English speakers with advanced education levels yet limited exposure to English health education environments. METHODS We used 113 semantic features to measure the content complexity and accessibility of original English resources. Using 1000 English health texts collected from Australian and international health organization websites rated by overseas tertiary students, we compared machine learning (decision tree, support vector machine, ensemble classifier, and logistic regression) after hyperparameter optimization (grid search for the best hyperparameter combination of minimal classification errors). We applied 5-fold cross-validation on the whole data set for the model training and testing; and calculated the area under the operating characteristic curve (AUC), sensitivity, specificity, and accuracy as the measurement of the model performance. RESULTS We developed and compared 4 machine learning algorithms using multidimensional semantic features as predictors. The results showed that ensemble classifier (LogitBoost) outperformed in terms of AUC (0.858), sensitivity (0.787), specificity (0.813), and accuracy (0.802). Support vector machine (AUC 0.848, sensitivity 0.783, specificity 0.791, and accuracy 0.786) and decision tree (AUC 0.754, sensitivity 0.7174, specificity 0.7424, and accuracy 0.732) followed. Ensemble classifier (LogitBoost), support vector machine, and decision tree achieved statistically significant improvement over logistic regression in AUC, sensitivity, specificity, and accuracy. Support vector machine reached statistically significant improvement over decision tree in AUC and accuracy. As the best performing algorithm, ensemble classifier (LogitBoost) reached statistically significant improvement over decision tree in AUC, sensitivity, specificity, and accuracy. CONCLUSIONS Our study shows that cognitive accessibility of English health texts is not limited to word length and sentence length as had been conventionally measured by medical readability formulas. We compared machine learning algorithms based on semantic features to explore the cognitive accessibility of health information for nonnative English speakers. The results showed the new models reached statistically increased AUC, sensitivity, and accuracy to predict health resource accessibility for the target readership. Our study illustrated that semantic features such as cognitive ability–related semantic features, communicative actions and processes, power relationships in health care settings, and lexical familiarity and diversity of health texts are large contributors to the comprehension of health information; for readers such as international students, semantic features of health texts outweigh syntax and domain knowledge.


Sign in / Sign up

Export Citation Format

Share Document