scholarly journals Age-Related Changes in Human Posture Control: Motor Coordination Tests

1990 ◽  
Vol 1 (1) ◽  
pp. 87-96 ◽  
Author(s):  
R.J. Peterka ◽  
F.O. Black

Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 y. Motor tests measured leg muscle electromyographic (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed no change with age if the amplitude measures were normalized by a factor related to subject height. In general, postoral responses to sudden translations showed minimal changes with age, and all age-related trends that were identified were small relative to the variability within the population.

1990 ◽  
Vol 1 (1) ◽  
pp. 73-85 ◽  
Author(s):  
R.J. Peterka ◽  
F.O. Black

Postural control was measured in 214 human subjects ranging in age from 7 to 81 y. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were normal, altered (by rotating the visual surround and support surface in proportion to the subject’s sway), or vision eliminated (eyes closed). No age-related increase in postoral sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older tban about 55 y showed the largest sway increases. Subjects younger than about 15 y were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues, whereas younger subjects had more difficulty with altered somatosensory cues.


1999 ◽  
Vol 9 (2) ◽  
pp. 103-109
Author(s):  
Reginald L. Reginella ◽  
Mark S. Redfern ◽  
Joseph M. Furman

Sensory information from lightly touching a reference with the hand is known to influence postural sway in young adults. The primary aim of this study was to compare the influence of finger contact (FC) with an earth-fixed reference to the influence of FC with a body-fixed reference. A second goal of this study was to determine if FC is used differently by older adults compared to younger adults. Using a force plate, center of pressure at the feet was recorded from blindfolded young and older subjects during several conditions. Subjects either did or did not lightly touch a force-sensitive plate that was either earth-fixed or moved forward and backward in synchrony with body sway (that is, sway-referenced). In addition, support surface conditions were also varied, including a fixed floor and a sway-referenced floor using an EquitestTM. Results showed that the type of FC, floor condition, and age each had an effect on postural sway. Touching an earth-fixed plate decreased postural sway as compared to no touching, while touching a sway-referenced plate incresased sway. This influence of FC was enhanced when the floor was sway-referenced. Although older subjects swayed more than young subjects overall, no age-FC interactions occurred, indicating that FC was not utilized differently between the age groups. This study suggests that FC cannot be disregarded as erroneous, especially when proprioceptive information from the legs is distorted. Further, FC is integrated with other sensory information by the postural control system similarly in young and older persons.


2020 ◽  
Vol 36 (4) ◽  
pp. 228-234
Author(s):  
Ziva M. Rosker ◽  
Jernej Rosker ◽  
Nejc Sarabon

Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction–specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial–lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.


2020 ◽  
Vol 8 (1) ◽  
pp. 14-37 ◽  
Author(s):  
James R. Chagdes ◽  
Joshua J. Liddy ◽  
Amanda J. Arnold ◽  
Laura J. Claxton ◽  
Jeffrey M. Haddad

Portable force-measurement technologies are becoming increasingly popular tools to examine the maturation of postural motor milestones, such as sitting and standing, in infants. These convenient, low-cost devices provide numerous opportunities to characterize postural development outside of the laboratory. However, it is important to understand the unique challenges and technical limitations associated with collecting center of pressure (CoP) data using portable force-measurement technologies in infant populations. This study uses a mathematical model to examine issues that emerge when using portable force-measurement technologies to collect sitting and standing postural data in infants. The results of our mathematical simulations demonstrate that the CoP errors from portable force-measurement technologies depend on the posture examined (e.g., sitting vs. standing), the anthropometrics of the person (e.g., height and weight), the frequency of body sway, and the experimental setup (e.g., an additional support surface being placed on top of the device). Recommendations are provided for developmental researchers interested in adopting these technologies in infant populations.


1994 ◽  
Vol 72 (2) ◽  
pp. 479-493 ◽  
Author(s):  
F. B. Horak ◽  
H. C. Diener

1. The effects of cerebellar deficits in humans on scaling the magnitude of automatic postural responses based on sensory feedback and on predictive central set was investigated. Electromyographic (EMG) and surface reactive torques were compared in patients with anterior lobe cerebellar disorders and in normal healthy adults exposed to blocks of four velocities and five amplitudes of surface translations during stance. Correlations between the earliest postural responses (integrated EMG and initial rate of change of torque) and translation velocity provided a measure of postural magnitude scaling using sensory information from the current displacement. Correlations of responses with translation amplitude provided a measure of scaling dependent on predictive central set based on sequential experience with previous like displacements because the earliest postural responses occurred before completion of the displacements and because scaling to displacement amplitude disappeared when amplitudes were randomized in normal subjects. 2. Responses of cerebellar patients to forward body sway induced by backward surface displacements were hypermetric, that is, surface-reactive torque responses were two to three times larger than normal with longer muscle bursts resulting in overshooting of initial posture. Despite this postural hypermetria, the absolute and relative latencies of agonist muscle bursts at the ankle, knee, and hip were normal in cerebellar patients. 3. Although they were hypermetric, the earliest postural responses of cerebellar patients were scaled normally to platform displacement velocities using somatosensory feedback. Cerebellar patients, however, were unable to scale initial postural response magnitude to expected displacement amplitudes based on prior experience using central set. Randomization of displacement amplitudes eliminated the set effect of amplitude on initial responses in normal subjects, but responses to randomized and blocked trials were not different in cerebellar patients. 4. Cerebellar patients compensated for hypermetric responses and lack of anticipatory scaling of earliest gastrocnemius activity by scaling large, reciprocally activated tibialis and quadriceps antagonist activity with the displacement velocity and amplitude. Correlations between these antagonist EMG integrals and displacement amplitudes were preserved when amplitudes were randomized, suggesting that feedback-dependent and not set-dependent mechanisms were responsible for scaling of antagonists by cerebellar patients. Antagonist compensation for initial hypermetric responses also could be induced in normals when they overresponded to unexpectedly small amplitudes of surface displacements. 5. The major effects of anterior lobe cerebellar damage on human postural responses involves impairment of response magnitude based on predictive central set and not on use of velocity feedback or on the temporal synergic organization of multijoint postural coordination.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 44 (4) ◽  
pp. 447-458 ◽  
Author(s):  
Douglas S Goodin ◽  
Kenneth C Squires ◽  
Beverley H Henderson ◽  
Arnold Starr

1982 ◽  
Vol 47 (2) ◽  
pp. 287-302 ◽  
Author(s):  
P. J. Cordo ◽  
L. M. Nashner

1. We have examined rapid postural adjustments associated with a class of voluntary movements that disturb postural equilibrium. In the text that follows, these motor activities are termed associated postural adjustments and voluntary focal movements, respectively. Standing human subjects performed a variety of movement tasks on a hand-held manipulandum, resulting in disturbances to their postural equilibrium. The experimental use of movements that interact with the subject's environment in a relatively simple was permitted a more precise comparison of the postural adjustments with their associated focal movements. 2. Subjects either pulled or pushed on a stiff interface (the handle) or they responded in a predetermined way to handle perturbations. These activities were carried out with various degrees of steady-state postural stability. Prior to and during these movements, support surface and handle forces, electromyographic (EMG) signals, and body sway were monitored. 3. In addition to previously shown postural adjustments associated with reaction-time armed movements, we have demonstrated these postural activities occur in concept with segmental stretch reflexes and self-initiated (untriggered) movements. Postural adjustments were initiated shortly before all focal movements tested except the short-latency component of the biceps stretch reflex (25- to 30-ms latency). However, this reflex component was rarely elicited by handle perturbations in free-standing subjects; therefore, postural adjustments usually preceded any biceps activity under this condition. 4. By varying the degree of steady-state postural equilibrium, a reciprocal gain/threshold relationship between postural and focal components was documented, i.e., when stability was high, postural activity was reduced or absent and focal activity enhanced. Conversely, the biceps stretch reflex was difficult to elicit under any condition where the subjects was not fully supported in the direction of movement and reaction times of focal movements were prolonged. 5. Postural activities associated with focal movements were found to share a number of organizational properties with automatic postural adjustments to support surface movements. Specifically, the postural muscle synergies were equivalent in muscle composition, relative activation magnitudes, and relative temporal sequencing. Furthermore, both types of postural adjustments were highly specific in locus and magnitude to the quality of steady-state postural equilibrium (e.g., postural "set"). 6. A conceptual model is proposed that suggests one simple way in which the reciprocal influence of postural set on postural and focal movement components and their temporal sequencing might be accomplished. Furthermore, we propose in this model a common central organization of postural adjustments associated with focal movements and those elicited by support-surface movements.


1984 ◽  
Vol 1 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Denis Brunt ◽  
Charles S. Layne ◽  
Melissa Cook ◽  
Linda Rowe

This paper describes automatic postural responses of deaf children during anterior body sway. Subjects were placed in a vestibular dysfunction (VDD) or vestibular nondysfunction (VNDD) group based on postrotary nystagmus response. They stood on an electrically driven platform, and brief support surface movement (12 cm/sec) elicited automatic postural responses under both static and dynamic conditions. Subjects underwent trials with and without vision, and electromyographical (EMG) data was recorded from posterior leg muscles. Both groups displayed some response characteristics found in previous reports (Nashner & Cordo, 1981), and under dynamic conditions the response latencies significantly decreased. However, the major finding was the response delay of some 40 msec by VDD subjects. It was proposed that this delay could in part be responsible for balance and movement problems exhibited by many deaf children.


2012 ◽  
Vol 108 (11) ◽  
pp. 2946-2956 ◽  
Author(s):  
A. D. Campbell ◽  
R. Chua ◽  
J. T. Inglis ◽  
M. G. Carpenter

Startling acoustic stimuli (SAS) induce the early release of prepared motor responses. The current study used SAS, in conjunction with a classical conditioning paradigm, to examine advanced motor preparation of conditioned postural responses (PRs). After generalized startle responses were induced, standing posture was perturbed in 2 blocks of 15 Conditioning trials, where in each trial the onset of a nonstartling auditory cue [i.e., a conditioned stimulus (CS)] preceded a leftward support-surface translation. Upon completion of each block, a single trial was conducted. After block 1, a CS-Only trial was used to induce conditioned PRs in the absence of balance perturbations. After block 2, a post-Conditioning Startle trial that involved a CS subsequently followed by a SAS was used to examine motor preparation of conditioned PRs. PRs were quantified in terms of center of pressure displacements, ankle and hip kinematics, as well as surface electromyography of proximal and distal bilateral muscle pairs. Results indicated that repeated experience with cued balance perturbations led to PR conditioning and, more importantly, motor preparation of PRs. Conditioning was evidenced in biomechanical and electromyographic responses observed in CS-Only trials, as well as the progressive changes to evoked response parameters during repeated Conditioning trials. SAS presented in post-Conditioning Startle trials evoked early onsets of biomechanical and electromyographic responses, while preserving relative response parameters that were each distinct from generalized startle responses. These results provide important insight into both the consequences of using cues in dynamic postural control studies and the neural mechanisms governing PRs.


Sign in / Sign up

Export Citation Format

Share Document