scholarly journals GDF5 Gene

2020 ◽  
Author(s):  
Keyword(s):  
2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Kun Zhu ◽  
Rui Zhao ◽  
Yuchen Ye ◽  
Gang Xu ◽  
Changchun Zhang

Abstract Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Christian Bucher ◽  
Amiq Gazdhar ◽  
Lorin M. Benneker ◽  
Thomas Geiser ◽  
Benjamin Gantenbein-Ritter

Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved byin vitroelectroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.


2018 ◽  
Vol 22 (8) ◽  
pp. 503-506
Author(s):  
Francisco García-Alvarado ◽  
Manuel Rosales-González ◽  
Daniel Arellano-Pérez-Vertti ◽  
Perla Espino-Silva ◽  
Maria Meza-Velazquez ◽  
...  

2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Sujie Zhang ◽  
Juan Wang ◽  
Hongliang Ji ◽  
Helei Jia ◽  
Dongsheng Guan

Abstract Using a case–control design, we assessed the association between single nucleotide polymorphisms (SNPs) of growth and differentiation factor 5 (GDF5)/rs143383 gene and interaction with environments and knee osteoarthritis (KOA). We recruited 288 KOA patients from the First Clinical College, Henan University of Chinese Medicine between June 2017 and May 2018. There was significant difference in genotype distribution between case group and control group (χ2 = 22.661, P=0.000). The minor C allele was significantly higher in the case group than that in the control group (20.5 vs 8.1%, P=0.000, odds ratio (OR) = 1.62, 95% confidence interval (CI): 1.29–2.03). Significant differences were also observed in other gene models. For age, all models show significant differences (P<0.05) for those whose age was more than 60 years, and no significant difference was observed for those under 60 years. For non-smoking group, there were significant differences between case group and control group, and for smoker, significance level was found in TT compared with CC and allele gene models. Patients with drinking and Bbody mass index (MI )≥ 24 also showed significant relationship between rs143383 and osteoarthritis (OA) under the following models: TT vs CC (P=0.000, P=0.018), TT/CT vs CC (P=0.043), TT vs CT/CC (P=0.000, P=0.009), and T vs C (P=0.024, P=0.000). Other gene models indicated no significance (P>0.05). Our results revealed a possible genetic association between GDF5 and KOA, and the TT genotype of rs143383 increased the risk of KOA in Chinese Han population. The interaction between GDF5 gene and drinking, smoking, and obesity further increased the risk of KOA.


2009 ◽  
Vol 37 (1) ◽  
pp. 429-434 ◽  
Author(s):  
Yong Feng Liu ◽  
Lin Sen Zan ◽  
Kui Li ◽  
Shuan Ping Zhao ◽  
Ya Ping Xin ◽  
...  

2012 ◽  
Vol 34 (04) ◽  
pp. 364-367
Author(s):  
S. Raleigh ◽  
M. Posthumus ◽  
D. O'Cuinneagain ◽  
W. van der Merwe ◽  
M. Collins

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shaoyao Yan ◽  
Huiyong Nie ◽  
Gang Bu ◽  
Weili Yuan ◽  
Suoliang Wang

Abstract Background The growth differentiation factor 5 (GDF5) gene regulates the growth of neuronal axons and dendrites and plays a role in the inflammatory response and tissue damage. The gene may also be associated with chronic postsurgical pain. This study aimed to reveal the relationship between SNPs in the GDF5 gene and orthopedic chronic postsurgical pain in Han Chinese population based on a case-control study. Methods We genotyped 8 SNPs within GDF5 gene in 1048 surgical patients with chronic postsurgical pain as the case group and 2062 surgical patients who were pain free as the control group. SNP and haplotypic analyses were performed, and stratified analyses were conducted to determine the correlations between significant SNPs and clinical characteristics. Results Only rs143384 in the 5′UTR of GDF5 was identified as significantly associated with increased susceptibility to chronic postsurgical pain, and the risk of A allele carriers was increased approximately 1.35-fold compared with that of G allele carriers. Haplotypes AGG and GGG in the LD block rs143384-rs224335-rs739329 also showed similar association patterns. Furthermore, we found that rs143384 was significantly correlated with chronic postsurgical pain in the subgroup aged ≤ 61 years, subgroup with a BMI ≤ 26, subgroup with no-smoking or no pain history, and subgroup with a drinking history. Conclusion Our study provided supportive evidence that genetic variations in the GDF5 gene are potential genetic factors that can increase the risk of chronic postsurgical pain in the Han Chinese population, but further research is necessary to elucidate the underlying mechanism.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 986
Author(s):  
Stefan Harsanyi ◽  
Radoslav Zamborsky ◽  
Lubica Krajciova ◽  
Milan Kokavec ◽  
Lubos Danisovic

Background: Developmental dysplasia of the hip (DDH) is one of the most prevalent skeletal disorders. DDH is considered a pathologic condition with polygenic background, but environmental and mechanic factors significantly contribute to its multifactorial etiology. Inheritance consistent with autosomal dominant type has also been observed. Single-nucleotide polymorphisms (SNPs) in various genes mostly related to formation of connective tissue are studied for a possible association with DDH. Methods: We genotyped three SNPs, rs1800796 located in the promoter region of the IL6 gene, rs143383 located in the 5′ untranslated region (UTR) of the GDF5 gene and rs726252 located in the fifth intron of the PAPPA2 gene. The study consisted of 45 subjects with DDH and 85 controls from all regions of Slovakia. Results: Association between DDH occurrence and studied genotypes affected by aforementioned polymorphisms was confirmed in the case of rs143383 in the GDF5 gene (p = 0.047), where the T allele was over-expressed in the study group. Meanwhile, in the matter of IL6 and PAPPA2, we found no association with DDH (p = 0.363 and p = 0.478, respectively). Conclusions: These results suggest that there is an association between DDH and GDF5 polymorphisms and that the T allele is more frequently presents in patients suffering from DDH.


2020 ◽  
Vol 103 (3) ◽  
pp. 36-45
Author(s):  
Kinispay M Dzhulamanov ◽  
◽  
Nikolay P Gerasimov ◽  
Vladimir I Kolpakov ◽  
Erzhan B Dzhulamanov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document