scholarly journals Determination of Fetal sex by Fetal anatomy parameters using a Fuzzy C-Mean Cluster

2021 ◽  
Vol 05 (02) ◽  
pp. 9-25
Author(s):  
Wafaa Kissara ◽  
Baydaa Hassan

This paper proposes a new approach to determining the sex of the fetus using the measurement of dimensions of the head. The research attempted to use one of the techniques of fuzzy logic in the field of medicine, and here it was dealt with the visual properties designed to mix the properties of fuzzy logic (FL) and feature images. The results that some traits cannot give good results such as the results obtained from the local binary pattern (LBP) algorithm and the power and superiority of the results of hybrid filters because the ultrasound images have a special color spectrum. The results also showed the ability of the fuzzy logic proposed by using the characteristics derived from the hybrid filter to deal with the study of images and to achieve a better diagnosis of the gender of the fetus through measuring the dimensions of the head.

2013 ◽  
Vol 11 ◽  
pp. 237-242 ◽  
Author(s):  
T. Kut ◽  
B. Chand ◽  
A. Lücken ◽  
S. Dickmann ◽  
D. Schulz

Abstract. In this contribution, a new approach for EMC-filter design is presented. Due to the increasing electrification of modern aircraft, as a result of the More Electric Aircraft concept, new strategies and approaches are required to fulfill the strict EMC aircraft standards (DO-160/ED-14 – Sec. 20). Consequently the weight and volume of the used filter components can be reduced. A promising approach could be a combination of passive and active filters. For the same attenuation effect, so-called hybrid filters achieve either savings in weight and volume, or can obtain an additional filtering effect with minimal weight increase of an existing system. In this paper, the underlying theory is explained in detail, carried out in a simulation tool and the gained insight is demonstrated with a sample measurement.


2017 ◽  
Vol 30 (1) ◽  
pp. 273-289
Author(s):  
Anmari Meerkotter

The Constitutional Court (CC) judgment of Lee v Minister of Correction Services 2013 2SA 144 (CC) is a recent contribution to transformative constitutional jurisprudence in the field of the law of delict. This matter turned on the issue of factual causation in the context of wrongful and negligent systemic omissions by the state. In this case note, I explore the law relating to this element of delictual liability with specific regard to the traditional test for factual causation – the conditio sine qua non (‘but-for’) test. In particular, I note the problems occasioned by formalistic adherence to this test in the context of systemic state omissions as evidenced by the SCA judgment in the same matter. I also consider the manner in which English courts have addressed this problem. Thereafter, I analyse the CC’s broader approach to the determination of factual causation as one based on common sense and justice. I argue that this approach endorses a break from a formalistic application of the test and constitutes a step towards an approach which resonates with the foundational constitutional values of freedom, dignity and equality. Furthermore, it presents an appropriate solution to the problems associated with factual causation where systemic omissions are concerned. I then consider the transformative impact of the Lee judgment. In particular, I argue that the broader enquiry favoured by the CC facilitates the realisation of constitutionally guaranteed state accountability, and amounts to an extension of the existing norm of accountability jurisprudence. Hence, I contend that the judgment presents a further effort by the Constitutional Court to effect wholesale the constitutionalisation of the law of delict, as well as a vindicatory tool to be used by litigants who have been adversely affected by systemic state omissions.


Author(s):  
Romain Desplats ◽  
Timothee Dargnies ◽  
Jean-Christophe Courrege ◽  
Philippe Perdu ◽  
Jean-Louis Noullet

Abstract Focused Ion Beam (FIB) tools are widely used for Integrated Circuit (IC) debug and repair. With the increasing density of recent semiconductor devices, FIB operations are increasingly challenged, requiring access through 4 or more metal layers to reach a metal line of interest. In some cases, accessibility from the front side, through these metal layers, is so limited that backside FIB operations appear to be the most appropriate approach. The questions to be resolved before starting frontside or backside FIB operations on a device are: 1. Is it do-able, are the metal lines accessible? 2. What is the optimal positioning (e.g. accessing a metal 2 line is much faster and easier than digging down to a metal 6 line)? (for the backside) 3. What risk, time and cost are involved in FIB operations? In this paper, we will present a new approach, which allows the FIB user or designer to calculate the optimal FIB operation for debug and IC repair. It automatically selects the fastest and easiest milling and deposition FIB operations.


Author(s):  
Neha Mehta ◽  
Svav Prasad ◽  
Leena Arya

Ultrasound imaging is one of the non-invasive imaging, that diagnoses the disease inside a human body and there are numerous ultrasonic devices being used frequently. Entropy as a well known statistical measure of uncertainty has a considerable impact on the medical images. A procedure for minimizing the entropy with respect to the region of interest is demonstrated. This new approach has shown the experiments using Extracted Region Of Interest Based Sharpened image, called as (EROIS) image based on Minimax entropy principle and various filters. In this turn, the approach also validates the versatility of the entropy concept. Experiments have been performed practically on the real-time ultrasound images collected from ultrasound centers and have shown a significant performance. The present approach has been validated with showing results over ultrasound images of the Human Gallbladder.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3070
Author(s):  
Sebastian Iwaszenko ◽  
Jakub Munk ◽  
Stefan Baron ◽  
Adam Smoliński

Modern dentistry commonly uses a variety of imaging methods to support diagnosis and treatment. Among them, cone beam computed tomography (CBCT) is particularly useful in presenting head structures, such as the temporomandibular joint (TMJ). The determination of the morphology of the joint is an important part of the diagnosis as well as the monitoring of the treatment results. It can be accomplished by measurement of the TMJ gap width at three selected places, taken at a specific cross-section. This study presents a new approach to these measurements. First, the CBCT images are denoised using curvilinear methods, and the volume of interest is determined. Then, the orientation of the vertical cross-section plane is computed based on segmented axial sections of the TMJ head. Finally, the cross-section plane is used to determine the standardized locations, at which the width of the gap between condyle and fossa is measured. The elaborated method was tested on selected TMJ CBCT scans with satisfactory results. The proposed solution lays the basis for the development of an autonomous method of TMJ index identification.


Sign in / Sign up

Export Citation Format

Share Document