Investigating near-surface wind fields as influenced by low-level jet occurrences in Missouri

2009 ◽  
Author(s):  
Marc R. Dahmer
2013 ◽  
Vol 31 (4) ◽  
pp. 625-632 ◽  
Author(s):  
O. Alizadeh Choobari ◽  
P. Zawar-Reza ◽  
A. Sturman

Abstract. Modification of the intensity of a low level jet (LLJ) and near-surface wind speed by mineral dust is important as it has implications for dust emission and its long-range transport. Using the Weather Research and Forecasting with Chemistry (WRF/Chem) regional model, it is shown that direct radiative forcing by mineral dust reduces temperature in the lower atmosphere, but increases it in the layers aloft. The surface cooling is shown to be associated with a reduction of turbulent kinetic energy (TKE) and hence vertical mixing of horizontal momentum. Changes in the vertical profile of temperature over the regions that are under the influence of a LLJ are shown to result in an intensification of the LLJ and near-surface wind speed, but a decrease of winds aloft. These changes in the wind speed profile differ from results of previous research which suggested a decrease of wind speed in the lower atmosphere and its increase in the upper boundary layer.


2018 ◽  
Vol 840 ◽  
pp. 266-290 ◽  
Author(s):  
S. M. Iman Gohari ◽  
Sutanu Sarkar

Stratified flow in nocturnal boundary layers is studied using direct numerical simulation (DNS) of the Ekman layer, a model problem that is useful to understand atmospheric boundary-layer (ABL) turbulence. A stabilizing buoyancy flux is applied for a finite time to a neutral Ekman layer. Based on previous studies and the simulations conducted here, the choice of $L_{\mathit{cri}}^{+}=Lu_{\ast }/\unicode[STIX]{x1D708}\approx 700$ ($L$ is the Obukhov length scale and $u_{\ast }$ is the friction velocity) provides a cooling flux that is sufficiently strong to cause the initial collapse of turbulence. The turbulent kinetic energy decays over a time scale of $4.06L/u_{\ast }$ during the collapse. The simulations suggest that imposing $L_{\mathit{cri}}^{+}\approx 700$ on the neutral Ekman layer results in turbulence collapse during the initial transient, independent of Reynolds number, $Re_{\ast }$. However, the long-time state of the flow, i.e. turbulent with spatial intermittency or non-turbulent, is found to depend on the initial value of $Re_{\ast }$ since the cooling flux and resultant stratification increase with $Re_{\ast }$ for a given $L^{+}$. The lower-$Re_{\ast }$ cases have sustained turbulence with shear and stratification profiles that evolve in a manner such that the gradient Richardson number, $Ri_{g}$, in the near-surface layer, including the low-level jet, remains subcritical. The highest $Re_{\ast }$ case has supercritical $Ri_{g}$ in the low-level jet and turbulence does not recover. A theoretical discussion is performed to infer that the bulk Richardson number, $Ri_{b}$, is more suitable than $L^{+}$ to determine the fate of stratified Ekman layers at late time. DNS results support the implications of $Ri_{b}$ for the effect of initial $Re_{\ast }$ and $L^{+}$ on the flow.


2018 ◽  
Vol 27 (4) ◽  
pp. 257 ◽  
Author(s):  
O. Rios ◽  
W. Jahn ◽  
E. Pastor ◽  
M. M. Valero ◽  
E. Planas

Local wind fields that account for topographic interaction are a key element for any wildfire spread simulator. Currently available tools to generate near-surface winds with acceptable accuracy do not meet the tight time constraints required for data-driven applications. This article presents the specific problem of data-driven wildfire spread simulation (with a strategy based on using observed data to improve results), for which wind diagnostic models must be run iteratively during an optimisation loop. An interpolation framework is proposed as a feasible alternative to keep a positive lead time while minimising the loss of accuracy. The proposed methodology was compared with the WindNinja solver in eight different topographic scenarios with multiple resolutions and reference – pre-run– wind map sets. Results showed a major reduction in computation time (~100 times once the reference fields are available) with average deviations of 3% in wind speed and 3° in direction. This indicates that high-resolution wind fields can be interpolated from a finite set of base maps previously computed. Finally, wildfire spread simulations using original and interpolated maps were compared showing minimal deviations in the fire shape evolution. This methodology may have an important effect on data assimilation frameworks and probabilistic risk assessment where high-resolution wind fields must be computed for multiple weather scenarios.


2015 ◽  
Vol 12 (1) ◽  
pp. 187-198 ◽  
Author(s):  
A. K. Kaiser-Weiss ◽  
F. Kaspar ◽  
V. Heene ◽  
M. Borsche ◽  
D. G. H. Tan ◽  
...  

Abstract. Reanalysis near-surface wind fields from multiple reanalyses are potentially an important information source for wind energy applications. Inter-comparing reanalyses via employing independent observations can help to guide users to useful spatio-temporal scales. Here we compare the statistical properties of wind speeds observed at 210 traditional meteorological stations over Germany with the reanalyses' near-surface fields, confining the analysis to the recent years (2007 to 2010). In this period, the station time series in Germany can be expected to be mostly homogeneous. We compare with a regional reanalysis (COSMO-REA6) and two global reanalyses, ERA-Interim and ERA-20C. We show that for the majority of the stations, the Weibull parameters of the daily mean wind speed frequency distribution match remarkably well with the ones derived from the reanalysis fields. High correlations (larger than 0.9) can be found between stations and reanalysis monthly mean wind speeds all over Germany. Generally, the correlation between the higher resolved COSMO-REA6 wind fields and station observations is highest, for both assimilated and non-assimilated (i.e., independent) observations. As expected from the lower spatial resolution and reduced amount of data assimilated into ERA-20C, the correlation of monthly means decreases somewhat relative to the other reanalyses (in our investigated period of 2007 to 2010). Still, the inter-annual variability connected to the North Atlantic Oscillation (NAO) found in the reanalysis surface wind anomalies is in accordance with the anomalies recorded by the stations. We discuss some typical examples where differences are found, e.g., where the mean wind distributions differ (probably related to either height or model topography differences) and where the correlations break down (because of unresolved local topography) which applies to a minority of stations. We also identified stations with homogeneity problems in the reported station values, demonstrating how reanalyses can be applied to support quality control for the observed station data. Finally, as a demonstration of concept, we discuss how comparing feedback files of the different reanalyses can guide users to useful scales of variability.


2019 ◽  
Vol 32 (23) ◽  
pp. 8261-8281 ◽  
Author(s):  
D. Carvalho

Abstract The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.


Author(s):  
David S. Nolan ◽  
Brian D. McNoldy ◽  
Jimmy Yunge

AbstractWhile global and regional dynamical models are used to predict the tracks and intensities of hurricanes over the ocean, these models are not currently used to predict the wind field and other impacts over land. This two-part study performs detailed evaluations of the near-surface, over-land wind fields produced in simulations of Hurricane Wilma (2005) as it traveled across South Florida. This first part describes the production of two high-resolution simulations using the Weather Research and Forecasting Model (WRF), using different boundary layer parameterizations available in WRF: the Mellor-Yamada-Janjić (MYJ) scheme and the Yonsei University (YSU) scheme. Initial conditions from the Global Forecasting System (GFS) are manipulated with a vortex bogussing technique to modify the initial intensity, size, and location of the cyclone. It is found possible through trial and error to successfully produce simulations using both the YSU and MYJ schemes that closely reproduce the track, intensity, and size of Wilma at landfall. For both schemes the storm size and structure also show good agreement with the wind fields diagnosed by H*WIND and the Tropical Cyclone Surface Wind Analysis (TCSWA). Both over water and over land, the YSU scheme has stronger winds over larger areas than MYJ, but the surface winds are more reduced in areas of greater surface roughness, particularly in urban areas. Both schemes produced very similar inflow angles over land and water. The over-land wind fields are examined in more detail in the second part of this study.


2020 ◽  
Vol 148 (11) ◽  
pp. 4641-4656
Author(s):  
Thomas R. Parish ◽  
Richard D. Clark ◽  
Todd D. Sikora

AbstractThe Great Plains low-level jet (LLJ) has long been associated with summertime nocturnal convection over the central Great Plains of the United States. Destabilization effects of the LLJ are examined using composite fields assembled from the North American Mesoscale Forecast System for June and July 2008–12. Of critical importance are the large isobaric temperature gradients that become established throughout the lowest 3 km of the atmosphere in response to the seasonal heating of the sloping Great Plains. Such temperature gradients provide thermal wind forcing throughout the lower atmosphere, resulting in the establishment of a background horizontal pressure gradient force at the level of the LLJ. The attendant background geostrophic wind is an essential ingredient for the development of a pronounced summertime LLJ. Inertial turning of the ageostrophic wind associated with LLJ provides a westerly wind component directed normal to the terrain-induced orientation of the isotherms. Hence, significant nocturnal low-level warm-air advection occurs, which promotes differential temperature advection within a vertical column of atmosphere between the level just above the LLJ and 500 hPa. Such differential temperature advection destabilizes the nighttime troposphere above the radiatively cooled near-surface layer on a recurring basis during warm weather months over much of the Great Plains and adjacent states to the east. This destabilization process reduces the convective inhibition of air parcels near the level of the LLJ and may be of significance in the development of elevated nocturnal convection. The 5 July 2015 case from the Plains Elevated Convection at Night field program is used to demonstrate this destabilization process.


2010 ◽  
Vol 49 (7) ◽  
pp. 1517-1537 ◽  
Author(s):  
Veronika Beck ◽  
Nikolai Dotzek

Abstract Tornado intensity is usually inferred from the damage produced. To foster postevent tornado intensity assessments, the authors present a model to reconstruct near-surface wind fields from forest damage patterns. By comparing the structure of observed and simulated damage patterns, essential parameters to describe a tornado near-surface wind field are derived, such as the ratio Gmax between circular and translational velocity, and the deflection angle α between peak wind and pressure gradient. The model consists of a wind field module following the Letzmann analytical tornado model and a tree module based on the mechanistic HWIND tree model to assess tree breakage. Using this method, the velocity components of the near-surface wind field, the track of the tornado center, and the spatial distribution of the Fujita scale along and across the damage path can be assessed. Necessary requirements to apply the model are knowledge of the tornado translation speed (e.g., from radar observations) and a detailed analysis of the forest damage patterns. One of the key findings of this analysis is that the maximum intensity of the tornado is determinable with an uncertainty of only (Gmax + 1) times the variability of the usually well-known tornado translation speed. Further, if Letzmann’s model is applied and the translation speed of the tornado is known, the detailed tree model is unnecessary and could be replaced by an average critical velocity for stem breakage υcrit independent of the tree species. Under this framework, the F3 and F2 ratings of the tornadoes in Milosovice, Czech Republic, on 30 May 2001 and Castellcir, Spain, on 18 October 2006, respectively, could be verified. For the Milosovice event, the uncertainty in peak intensity was only ±6.0 m s−1. Additional information about the structure of the near-surface wind field in the tornado and several secondary vortices was also gained. Further, this model allows for distinguishing downburst damage patterns from those of tornadoes.


2018 ◽  
Vol 18 (4) ◽  
pp. 2913-2928 ◽  
Author(s):  
Norbert Kalthoff ◽  
Fabienne Lohou ◽  
Barbara Brooks ◽  
Gbenga Jegede ◽  
Bianca Adler ◽  
...  

Abstract. A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on average about 1.9 km deep, and easterly winds above; the depth and strength of the monsoon flow show great day-to-day variability. Within the monsoon layer, a nocturnal low-level jet forms in approximately the same layer as the LLC. Its strength and duration is highly variable from night to night. This unique data set will allow us to test some new hypotheses about the processes involved in the development of LLCs and their interaction with the boundary layer and can also be used for model evaluation.


Sign in / Sign up

Export Citation Format

Share Document