scholarly journals Thirsty Textile and Fashion Industry PART I: Water Distribution on Earth and Virtual Water, Water Footprint Concepts

Author(s):  
RB Chavan
Author(s):  
Mohammad Delpasand ◽  
Omid Bozorg-Haddad ◽  
Erfan Goharian

Abstract Uneven water distribution in the world is the main reason today that some countries face problems due to water scarcity. Human activities consume and pollute large amounts of water. Globally, agriculture is the largest water user by volume. However, the water used by industrial and household sectors is still significant. Water consumption and pollution are caused by specific activities such as irrigation, bathing, washing, cleaning, cooling and by various other processes. Little attention has been paid to how much water use and pollution ultimately result from such activities, and how much water is consumed by communities, compared to the attention paid to the structure of the public economy that supplies consumer goods and services. Overall, to mitigate water scarcity problems, there are several approaches that can be made, such as inter-basin water transfer, increasing efficiency of water consumption and also using new concepts such as virtual water and the water footprint. The footprint of a product is the amount of fresh water used to produce it, measured across the complete supply chain. Water footprint is a multidimensional indicator that shows the amount of water consumed by the source as well as the amount and types of contamination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1769
Author(s):  
Maria Macarena Arrien ◽  
Maite M. Aldaya ◽  
Corina Iris Rodriguez

Agriculture is the largest fresh water consuming sector, and maize is the most produced and consumed crop worldwide. The water footprint (WF) methodology quantifies and evaluates the water volumes consumed and polluted by a given crop, as well as its impacts. In this work, we quantified for the first time the green WF (soil water from precipitation that is evapotranspired) and the green virtual water exports of maize from Buenos Aires province, Argentina, during 2016–2017, due to the relevance of this region in the world maize trade. Furthermore, at local level, we quantified the green, blue (evapotranspired irrigation), and grey (volume of water needed to assimilate a pollution load) WF of maize in a pilot basin. The green WF of maize in the province of Buenos Aires ranged between 170 and 730 m3/ton, with the highest values in the south following a pattern of yields. The contribution of this province in terms of green virtual water to the international maize trade reached 2213 hm3/year, allowing some water-scarce nations to ensure water and water-dependent food security and avoid further environmental impacts related to water. At the Napaleofú basin scale, the total WF of rainfed maize was 358 m3/ton (89% green and 11% grey) and 388 m3/ton (58% green, 25% blue, and 17% grey) for the irrigated crop, showing that there is not only a green WF behind the exported maize, but also a Nitrogen-related grey WF.


2016 ◽  
Vol 17 (2) ◽  
pp. 472-479 ◽  
Author(s):  
Jiefeng Kang ◽  
Jianyi Lin ◽  
Shenghui Cui ◽  
Xiangyang Li

Providing a comprehensive insight, water footprint (WF) is widely used to analyze and address water-use issues. In this study, a hybrid of bottom-up and top-down methods is applied to calculate, from production and consumption perspectives, the WF for Xiamen city from 2001 to 2012. Results show that the average production WF of Xiamen was 881.75 Mm3/year and remained relatively stable during the study period, while the consumption WF of Xiamen increased from 979.56 Mm3/year to 1,664.97 Mm3/year over the study period. Xiamen thus became a net importer of virtual water since 2001. Livestock was the largest contributor to the total WF from both production and consumption perspectives; it was followed by crops, industry, household use, and commerce. The efficiency of the production WF has increased in Xiamen, and its per capita consumption WF was relatively low. The city faces continuing growth in its consumption WF, so more attention should be paid to improving local irrigation, reducing food waste, and importing water-intensive agricultural products.


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


2009 ◽  
pp. 49-59 ◽  
Author(s):  
Consuelo Varela-Ortega ◽  
Roberto Rodríguez Casado ◽  
M Ramón Llamas ◽  
Paula Novo ◽  
Maite Aldaya ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 477 ◽  
Author(s):  
Muhammad Tariq ◽  
Nick van de Giesen ◽  
Shahmir Janjua ◽  
Muhammad Shahid ◽  
Rashid Farooq

Water sharing within the states/provinces of a country and cross-border is unavoidable. Conflicts between the sharing entities might turn more severe due to additional dependency on water, growing population, and reduced availability as a result of climate change at many locations. Pakistan, being an agricultural country, is severely water stressed and heading toward a worsening situation in the near future. Pakistan is heading toward water scarcity as water availability in the Indus basin is becoming critical. Being a downstream riparian of India and Afghanistan in the Indus basin, water availability depends on the releases of water from both countries. The Indus Water Treaty is governing the water distribution rights between India and Pakistan. However, there exists no proper agreement between Pakistan and Afghanistan and the construction of new dams on the Kabul River is another threat to water availability to Pakistan. Correct implementation of the Indus Water Treaty with India is required, together with an effective agreement with Afghanistan about the water sharing. In addition to water shortage, poor management of water resources, inequitable sharing of water, lack of a systematic approach, old-fashioned irrigation practices, and growing agricultural products with large water footprints are all exacerbating the problem. The water shortage is now increasingly countered by the use of groundwater. This sudden high extraction of groundwater is causing depletion of the groundwater table and groundwater quality issues. This water shortage is exacerbating the provincial conflicts over water, such as those between Punjab and Sindh provinces. At one end, a uniform nationwide water allocation policy is required. At the same time, modern irrigation techniques and low-water-footprint agricultural products should be promoted. A fair water-pricing mechanism of surface water and groundwater could be an effective measure, whereas a strict policy on groundwater usage is equally important. Political will and determination to address the water issues are required. The solutions must be based on transparency and equity, by using engineering approaches, combined with comprehensive social support. To develop a comprehensive water strategy, a dedicated technopolitical institute to strengthen the capabilities of nationwide expertise and address the issues on a regular basis is required to overcome the complex and multidimensional water-related problems of the country.


Sign in / Sign up

Export Citation Format

Share Document