scholarly journals Impact of climate change on drought in the Daklak province

2014 ◽  
Vol 17 (3) ◽  
pp. 5-11
Author(s):  
Khoi Nguyen Dao ◽  
Quang Nguyen Xuan Chau

The main objective of this study was to evaluate the impact of climate change on the meteorological drought in the Daklak province. In this study, the meteorological drought was calculated using the Standardized Precipitation Index (SPI).From this result, two scensrios fot the precipitation VA1B and B1 were downscaled, from the outputs of 4 GCMs (General Circulation Model): CGCM3.1 (T63), CM2.0, CM2.1, and HadCM3 using the simple downscaling method (delta change method). The impacts of climate change on the droughts were assessed by comparing the present (1980- 2009) and the future droughts (2010-2039, 2040-2069, and 2070-2099).Results of the study suggested that the future temperature would increase by 0.9-2.8ºC and the future precipitation would decrease by 0.4-4.7% for both A1B and B1 scenarios. Under the future climate scenarios, the frequency and severity of extreme drought would increase. The results obtained in this study could be useful for planning and managing water resources at this region.

2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2014 ◽  
Vol 9 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Nobuhiko Sawai ◽  
◽  
Kenichiro Kobayashi ◽  
Apip ◽  
Kaoru Takara ◽  
...  

This paper assesses the impact of climate change in the Black Volta River by using data output from the atmospheric general circulation model with a 20-km resolution (AGCM20) through the Japanese Meteorological Agency (JMA) and the Meteorological Research Institute (MRI). The Black Volta, which flows mainly in Burkina Faso and Ghana in West Africa, is a major tributary of the Volta River. The basin covers 142,056 km2 and has a semi-arid tropical climate. Before applying AGCM20 output to a rainfall–runoff model, the performance of the AGCM20 rainfall data is investigated by comparing it with the observed rainfall in the Black Volta Basin. To assess the possible impact of rainfall change on river flow, a kinematic wave model, which takes into consideration saturated and unsaturated subsurface soil zones, was performed. The rainfall analysis shows that, the correlation coefficient of the monthly rainfall between the observed rainfall and AGCM20 for the present climate (1979–2004) is 0.977. In addition, the analysis shows that AGCM20 overestimates precipitation during the rainy season and underestimates the dry season for the present climate. The analysis of the AGCM20 output shows the precipitation pattern change in the future (2075–2099). In the future, precipitation is expected to increase by 3%, whereas evaporation and transpiration are expected to increase by 5% and by 8%, respectively. Also, daily maximum rainfall is expected to be 20 mm, or 60%, higher. Thus, the future climate in this region is expected to be more severe. The rainfall–runoff simulation is successfully calibrated at the Bamboi discharge gauging station in the Black Volta fromJune 2000 to December 2000 with 0.72 of the Nash–Sutcliffe model efficiency index. The model is applied with AGCM20 outputs for the present climate (1979–2004) and future climate (2075–2099). The results indicate that future discharge will decrease from January to July at the rate of the maximum of 50% and increase fromAugust to December at the rate of the maximumof 20% in the future. Therefore, comprehensive planning for both floods and droughts are urgently needed in this region.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Joo-Heon Lee ◽  
Hyun-Han Kwon ◽  
Ho-Won Jang ◽  
Tae-Woong Kim

This study attempts to analyze several drought features in South Korea from various perspectives using a three-month standard precipitation index. In particular, this study aims to evaluate changes in spatial distribution in terms of frequency and severity of droughts in the future due to climate change, using IPCC (intergovernmental panel on climate change) GCM (general circulation model) simulations. First, the Mann-Kendall method was adopted to identify drought trends at the five major watersheds. The simulated temporal evolution of SPI (standardized precipitation index) during the winter showed significant drying trends in most parts of the watersheds, while the simulated SPI during the spring showed a somewhat different feature in the GCMs. Second, this study explored the low-frequency patterns associated with drought by comparing global wavelet power, with significance test. Future spectra decreased in the fractional variance attributed to a reduction in the interannual band from 2 to 8 years. Finally, the changes in the frequency and the severity under climate change were evaluated through the drought spell analyses. Overall features of drought conditions in the future showed a tendency to increase (about 6%) in frequency and severity of droughts during the dry season (i.e., from October to May) under climate change.


2015 ◽  
Vol 42 (9) ◽  
pp. 634-644 ◽  
Author(s):  
Netra P. Timalsina ◽  
Knut T. Alfredsen ◽  
Ånund Killingtveit

The ice conditions in a regulated river will depend on the climatic changes as well as the changes to the hydropower operation strategies in the future. The existing literature shows that very few studies have been carried out to investigate the impact of climate change on the river ice regime, which is important for operation of hydropower in cold climates. In this study, a series of modelling tools have been used to transform the climate change signal in terms of precipitation and air temperature into cross-section based river ice assessment in a basin with a complicated hydropower system. The study is based on the EURO-CORDEX climate change data extracted from a regional climate model driven by a suite of five general circulation models with three representative concentration pathways. Hydrological model simulation results show that the winter and spring flow will be increased, which will have an impact on the river ice conditions towards the middle and end of this century. Reservoir-hydropower model simulation shows that the production flows in the winter will be increased in the future. River ice model simulation shows the number of days with freezing water temperature are reduced in the future climate, and correspondingly days with frazil ice are reduced at most of the locations in the study area. The future period with ice cover will also be shortened. The paper also demonstrates a general methodology and procedure to simulate future ice conditions in a regulated river combining multiple models and data sets.


Author(s):  
A. BALVANSHI ◽  
◽  
H. L. TIWARI ◽  

The present work focuses on estimation of future evapotranspiration of paddy, maize, soybean and assessment of yields of these crops under RCP scenarios 2.6, 4.5, and 8.5 for years 1997-2099 using FAO Cropwat and AquaCrop yield simulating models for the Sehore district, in central state of India. Statistically downscaled General Circulation Model CanESM2 data were used as input to Cropwat and AquaCrop tools for generation of future crop evapotranspiration and crop yield data. The AquaCrop yield model was first checked for its suitability and accuracy in prediction of yield for years 1997-2010. The future scenario RCP 8.5 shows the highest reduction in the yield of paddy (-8.5%), maize (-4.52%), and soybean (-3.93%) during the future period. It was concluded that the FAO AquaCrop model can be applied to many other crops as well as in the other regions to formulate proper cropping strategies that will help to decrease the risks due to future climate change.


2020 ◽  
pp. 1-13
Author(s):  
Dilip Kumar ◽  
Rajib Bhattacharjya

Uttarakhand, a Himalayan state of India, may experience an increase in temperature of 1.4°C to 5.8°C by 2100 due to global warming. The rise in temperature may melt the glaciers of the state and may have some significant impact on the rainfall. In this study, we have quantified the changes in the rainfall of the state. Also, an attempt has been made to evaluate the impact of climate change on rainfall. The future rainfall can be estimated by using a global circulation model (GCM). However, due to the very coarse spatial resolution of the different GCM, we cannot use them directly. For matching this spatial inequality between the GCM output and historical precipitation data, we used the statistical downscaling technique. In the present study, we have examined the suitability of the artificial neural network with principal component analysis for downscaling the rainfall for different hilly districts of the state. We used the GCM model developed by Canadian Earth System Model, and the Indian metrological department gridded rainfall data. We performed the analysis for the different scenarios to visualize the impact of climate change on rainfall trends for all nine hilly districts of Uttarakhand. Results show that there was a clear indication of climate change in upper Himalayan Districts like Pithoragarh, Rudraprayag, and Chamoli, which was observed from the peak of monthly rainfall. The percentage change of monsoon rainfall in the future may go up to 200 % in the case of RCP8.5, and the change maybe around 180% for RCP4. Also, the volume of rainfall may increase in the case of RCP8.5 from July to September as compared to the historical data, i.e., there may be a shifting of monsoon rainfall in the future.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 312 ◽  
Author(s):  
Minsung Kwon ◽  
Jang Hyun Sung

The standardized precipitation index (SPI)—a meteorological drought index—uses various reference precipitation periods. Generally, drought projections using future climate change scenarios compare reference SPIs between baseline and future climates. Here, future drought was projected based on reference precipitation under the baseline climate to quantitatively compare changes in the frequency and severity of future drought. High-resolution climate change scenarios were produced using HadGEM2-AO General Circulation Model (GCM) scenarios for Korean weather stations. Baseline and future 3-month cumulative precipitation data were fitted to gamma distribution; results showed that precipitation of future climate is more than the precipitation of the baseline climate. When future precipitation was set as that of the baseline climate instead of the future climate, results indicated that drought intensity and frequency will decrease because the non-exceedance probability for the same precipitation is larger in the baseline climate than in future climate. However, due to increases in regional precipitation variability over time, some regions with opposite trends were also identified. Therefore, it is necessary to understand baseline and future climates in a region to better design resilience strategies and mechanisms that can help cope with future drought.


2021 ◽  
Author(s):  
Shalaka Shah ◽  
Shreenivas Londhe

Abstract It is the need of the hour to predict the impact of climate change, especially rainfall on the future environmental conditions on local as well as global scales. The present work aims at studying the impact of climate change on the rainfall occurring over Pune, the eighth largest city in India. The General Circulation Models (GCMs) are predominantly used to obtain the climate data all over the globe, at various grid points, for past and future years. Rainfall values obtained from these grid points need to be downscaled to make them location specific. This study proposes a soft computing tool, Artificial Neural Network (ANN) for the purpose of downscaling. The rainfall data at 4 grid points surrounding Pune, was extracted from 5 different GCMs and given as input to ANN with observed rainfall as output, thus forming 5 models. For comparison, a pre-existing downscaling technique, Distribution based scaling (DBS) was used. The coefficient of correlation (r) showed that ANN was working better than DBS. The value of r for ANN was 0.73 for its least accurate model whereas DBS managed to reach 0.73 for its most accurate model. The future rainfall estimated with the help of the trained ANN models show an increase in mean rainfall over the Pune region by ∼2 – 15% and decrease in maximum rainfall by ∼40 – 65%. Peak prediction of rainfall simulated by ANN was not very accurate and hence there is still an opportunity for improvement which is the future scope of this study.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>In the last two decades, different climate downscaling initiatives provided climate scenarios for Europe. The most recent initiative, CORDEX, provides Regional Climate Model (RCM) data for Europe with a spatial resolution of 12.5 km, while the previous initiative, ENSEMBLES, had a spatial resolution of 25 km. They are based on different emission scenarios, Representative Concentration Pathways (RCPs) and Special Report on Emission Scenarios (SRES) respectively.</p><p>A study carried out by Stanzel et al. (2018) explored the hydrological impact and discharge projections for the Danube basin upstream of Vienna when using either CORDEX and ENSEMBLES data. This basin covers an area of 101.810<sup></sup>km<sup>2</sup> with a mean annual discharge of 1923 m<sup>3</sup>/s at the basin outlet. The basin is dominated by the Alps, large gradients and is characterized by high annual precipitations sums which provides valuable water resources available along the basin. Hydropower therefore plays an important role and accounts for more than half of the installed power generating capacity for this area. The estimation of hydropower generation under climate change is an important task for planning the future electricity supply, also considering the on-going EU efforts and the “Green Deal” initiative.</p><p>Taking as input the results from Stanzel et al. (2018), we use transfer functions derived from historical discharge and hydropower generation data, to estimate potential changes for the future. The impact of climate change projections of ENSEMBLE and CORDEX in respect to hydropower generation for each basin within the study area is determined. In addition, an assessment of the impact on basins dominated by runoff river plants versus basins dominated by storage plants is considered.</p><p>The good correlation between discharge and hydropower generation found in the historical data suggests that discharge projection characteristics directly affect the future expected hydropower generation. Large uncertainties exist and stem from the ensembles of climate runs, but also from the potential operation modes of the (storage) hydropower plants in the future.</p><p> </p><p> </p><p>References:</p><p>Stanzel, P., Kling, H., 2018. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. J. Hydrol. 563, 987–999. https://doi.org/10.1016/j.jhydrol.2018.06.057</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document