scholarly journals Synthesis and cytotoxicity of substituted aromatic curcuminoids against human oral epidermal carcinoma-KB cell line

2021 ◽  
Vol 24 (2) ◽  
pp. first
Author(s):  
Nga Thi Vo ◽  
Nhan Phuoc Hoai Phan ◽  
Tuyen Nguyen Kim Pham ◽  
Hao Minh Hoang

Introduction: The survival rate of oral cancer, like other types of cancers, has not been improved regardless of the early diagnosis and the introduction of advanced therapies. Treatment for oral cancer includes surgery, radiation therapy, and chemotherapy. However, the effectiveness has been limited due to recurrence and undesirable side effects. Metabolites from plant sources have been shown to be relatively less toxic and thus are considered as potential anti-cancer agents. Interestingly, curcumin isolated from the rhizome of Curcuma longa L. possesses broad-spectrum bioactivities. We focused on the synthesis of curcumin-based analogs bearing -OH/-OCH3/-F groups on the phenyl rings in our continuous efforts to search for curcumin-based anti-cancer agents. The synthesized compounds were subsequently evaluated for the cytotoxic activities against KB cancer cell line (an epidermal carcinoma of the mouth). Methods: The desired curcuminoids were synthesized via aldol reactions between benzaldehyde derivatives and pentane-2,4-dione using n-butylamine as a catalyst. Structures were distinguished by NMR and MS spectra. The cytotoxic activity against KB was determined through the half-maximal inhibitory concentration (IC50, mM). Results: Six curcumin analogs (1-6) were successfully synthesized in a yield of 48-76%. The 3- hydroxy/fluoro curcumin analogs (3, IC50 = 15.61 0.13 mM; 6, IC50 = 22.65 1.76 mM) exhibited better anti-cancer activities when compared to curcumin (1, IC50 = 33.35 2.66 mM), whereas the para-fluoro substitution patterns displayed lower inhibitory activities (4, 5) against KB cancer cell line. Conclusions: The synthetic yields are dependent on the position and nature of substituents in aromatic rings. The presence of electron-donating groups gives products (1-3) in lower yields when compared to those (4-6) prepared from fluorinated benzaldehydes as starting materials. The curcuminoids bearing -OH groups at para-positions in aromatic rings (1, 2) can be responsible for better inhibition of cell growth, whereas the fluoro-substituted compounds (4, 5) make a negative contribution to inhibitory activity. Furthermore, the contributions -OH/-F groups at meta-position in aromatic rings of (3, 6) on the cytotoxicity against KB are remarkable and firstly reported in our findings.

PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12554 ◽  
Author(s):  
Daisuke Yamamoto ◽  
Kaori Shima ◽  
Kou Matsuo ◽  
Takashi Nishioka ◽  
Chang Yan Chen ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e13974 ◽  
Author(s):  
Rajeshree Joshi ◽  
Amany Tawfik ◽  
Nneka Edeh ◽  
Veronica McCloud ◽  
Stephen Looney ◽  
...  

Medicina ◽  
2019 ◽  
Vol 55 (7) ◽  
pp. 322 ◽  
Author(s):  
Mohammad Firdaus Kamaruddin ◽  
Mohammad Zakir Hossain ◽  
Aied Mohamed Alabsi ◽  
Marina Mohd Bakri

Background and Objectives: The antitumor activities of capsaicin on various types of cancer cell lines have been reported but the effect of capsaicin on oral cancer, which is prevalent among Asians, are very limited. Thus, this study aimed to investigate the effects of capsaicin on ORL-48, an oral cancer cell line of Asian origin. Materials and Methods: Morphological changes of the ORL-48 cells treated with capsaicin were analyzed using fluorescence microscopy. The apoptotic-inducing activity of capsaicin was further confirmed by Annexin V-Fluorescein isothiocyanate / Propidium iodide (V-FITC/PI) staining using flow cytometry. In order to establish the pathway of apoptosis triggered by the compound on ORL-48 cells, caspase activity was determined and the mitochondrial pathway was verified by mitochondrial membrane potential (MMP) assay. Cell cycle analysis was also performed to identify the cell cycle phase of ORL-48 cells being inhibited by the capsaicin compound. Results: Fluorescence microscopy exhibited the presence of apoptotic features in capsaicin-treated ORL-48 cells. Apoptosis of capsaicin-treated ORL-48 cells revealed disruption of the mitochondrial-membrane potential, activation of caspase-3, -7 and -9 through an intrinsic apoptotic pathway and subsequently, apoptotic DNA fragmentation. The cell cycle arrest occurred in the G1-phase, confirming antiproliferative effect of capsaicin in a time-dependent manner. Conclusion: This study demonstrated that capsaicin is cytotoxic against ORL-48 cells and induces apoptosis in ORL-48 cells possibly through mitochondria mediated intrinsic pathway resulting in cell cycle arrest.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301
Author(s):  
Quynh Mai Thi Ngo ◽  
Thao Quyen Cao ◽  
Le Son Hoang ◽  
Manh Tuan Ha ◽  
Mi Hee Woo ◽  
...  

Medicinal plants have been shown to have tremendous potential for the development of new drug molecules for various serious diseases. Piper nigrum L. (Piperaceae) is a well-known spice considered to be the “The King of Spices” among various spices. The phytochemicals isolated from P. nigrum L. are potent biological agents with anticancer properties. Our study was designed to evaluate the cytotoxic activities of chemical compounds from the dried fruits of P. nigrum L. Sixteen known compounds (1–16), including fifteen alkaloids, were isolated and identified. Compounds 10, 11, 12, 13, 14, and 15 exhibited cytotoxic activities against a human cervical cancer cell line, Hela, with IC50 values of 49.8, 40.4, 23.1, 22.1, 41.0, and 26.9 μM, respectively. Compounds 10, 12, and 15 exhibited cytotoxicities against a breast cancer cell line, MCF-7, with IC50 values of 36.9, 55.7, and 36.0 μM, respectively. Compounds 6, 12, 13, 14, 15, and 16 exhibited cytotoxic activities against the human promyelocytic leukemia cell line, HL-60, with IC50 values of 26.9, 51.4, 51.6, 54.4, 16.0, and 21.1 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document