scholarly journals Low cost activated carbon prepared from Dipterocarpus alatus fruit

Author(s):  
Yuvarat Ngernyen ◽  
Werawit Phiewruangnont ◽  
Narathorn Mahantadsanapong ◽  
Chantakorn Patawat ◽  
Ketsara Silakate ◽  
...  

Dipterocarpus alatus tree grows prolifically throughout Thailand and can be tapped to yield significant quantities of oil to be used as natural diesel. However, such practices lead to waste dried fruit dropping from the tree. At present, there is no utilization of this dropped fruit, therefore costeffective processes need to be applied to obtain higher value products from this waste. A possible to utilization is the conversion to activated carbon for adsorption applications including the removal of heavy metals, dyes, and other contaminants in water purification and other decontamination process. A major challenge of current commercial activated carbon is the high production cost and recently it has been shown that chemical activators comprise a significant proportion of these costs. This feasibility study investigates the use of Dipterocarpus alatus fruit as raw material to produce low cost activated carbon adsorbents. Activated carbon was prepared from Dipterocarpus alatus fruit: endocarp, mesocarp, and wing by chemical activation with ZnCl2, FeCl3, and KOH. Each part of the fruit was impregnated with 30 wt% activating agent at a ratio of 1:2 for 1 h and then carbonized at 500 oC for a further 1 h. The surface area, pore volume, and average pore size of the resulting carbons were characterized by nitrogen gas adsorption. Activation of mesocarp with ZnCl2, KOH, and FeCl3 gave activated carbons with the surface area of 447, 256, and 199 m2/g, respectively. In the same way, ZnCl2 activation gave a maximum surface area of 312 and 278 m2/g for wing and endocarp, respectively. All of the aforementioned samples have an average pore size of around 2 nm. In contrast, KOH and FeCl3 activation of wing and endocarp produced activated carbon with very low surface area (below 25 m2/g), but with an average pore size of 5- 14 nm. The maximum surface area of activated carbon prepared from Dipterocarpus alatus fruit was higher than some literature examples for activated carbon from other biomass. Consequently, Dipterocarpus alatus fruit demonstrated significant potential as a feedstock for the preparation of low cost activated carbons.

2019 ◽  
Vol 5 (4) ◽  
pp. 82 ◽  
Author(s):  
Jemma Rowlandson ◽  
James Coombs OBrien ◽  
Karen Edler ◽  
Mi Tian ◽  
Valeska Ting

Lignin is a significant by-product of the paper pulping and biofuel industries. Upgrading lignin to a high-value product is essential for the economic viability of biorefineries for bioethanol production and environmentally benign pulping processes. In this work, the feasibility of lignin-derived activated carbons for hydrogen storage was studied using a Design of Experiments methodology, for a time and cost-efficient exploration of the synthesis process. Four factors (carbonisation temperature, activation temperature, carbonisation time, and activation time) were investigated simultaneously. Development of a mathematical model allowed the factors with the greatest impact to be identified using regression analysis for three responses: surface area, average pore size, and hydrogen uptake at 77 K and 1 bar. Maximising the surface area required activation conditions using the highest settings, however, a low carbonisation temperature was also revealed to be integral to prevent detrimental and excessive pore widening. A small pore size, vital for efficient hydrogen uptake, could be achieved by using low carbonisation temperature but also low activation temperatures. An optimum was achieved using the lowest carbonisation conditions (350 °C for 30 min) to retain a smaller pore size, followed by activation under the severest conditions (1000 °C for 60 min) to maximise surface area and hydrogen uptake. These conditions yielded a material with a high surface area of 1400 m2 g−1 and hydrogen uptake of 1.9 wt.% at 77 K and 1 bar.


2020 ◽  
Vol 988 ◽  
pp. 80-86
Author(s):  
Dewa Ngakan Ketut Putra Negara ◽  
Tjokorda Gde Tirta Nindhia ◽  
Lusiana ◽  
I. Made Astika ◽  
Cokorda Istri Putri Kusuma Kencanawati

Activated carbon is a multipurpose material due to its unique properties such as high surface area and pore volume. The reduced carbon source from coal has led to the development of activated carbon from lignocellulosic material. However, there is limited literature reported the use of swat bamboo (Gigantocholoa verticillata) as an activated carbon precursor. In this research, swat bamboo has been converted to activated carbons under different carbonization temperatures of 550, 650, and 750OC and activation durations of 1.5 and 2 h. The results show that at activation time of 1.5 h, increasing carbonization temperature affecting the higher pore volume and surface area gained. The optimal characteristics of activated carbon were obtained at a carbonization temperature of 750OC and activation time of 1.5 h. This due to the activated carbon produced in this condition has the highest pore volume, surface area, and adsorption capacity of 0.138 cm3/g, 135.30 m2/g, and 95.776 cm3/g, respectively. Its average pore diameter was 2.053 nm with fix carbon of 75.26% and C of 76.79%. It has a monomodal pore size distribution with the highest adsorption of 0.056 cm3/g/nm occurred at a pore size of 1.516 nm.


10.29007/ps3m ◽  
2020 ◽  
Author(s):  
Yuvarat Ngernyen ◽  
Werawit Phiewruangnont ◽  
Ratchapon Anachai ◽  
Andrew Hunt

This present work aims to reduce the color of biodiesel from crude palm oil through the application of activated carbon prepared from chili stem waste. Chilli stem was converted into activated carbon using 30 wt% KOH at a ratio of 1:2 for 1 h, followed by carbonization at 500 oC under an N2 atmosphere for a further hour. Physico-chemical characteristics of the raw material and activated carbon were analyzed including thermogravimetric analysis, proximate analysis, and porosities. The results demonstrated that the activated carbon was a porous material with a highly mesoporous structure (84.5%). The surface area of activated carbon was 10.6 m2/g and it exhibited an average pore diameter of 27.25 nm which was suitable for the removal of large highly colored molecules. Batch adsorption experiments were performed to investigate the reduction in color of the biodiesel. Ratios of activated carbon to biodiesel of 0.002 and 0.1 w/v were used in the study. For comparison, the adsorption was also tested against a commercial activated carbon with a surface area of 1,130 m2/g, but lower average pore size of 3.72 nm. The chili stem activated carbon can reduce color by approximately 15% within 24 h and the maximum color reduction was 95% after 96 h for both activated carbon to biodiesel ratios. The color of biodiesel changes from dark red to yellow and eventually resulted in a pale yellow color with longer adsorption times and was deemed more attractive for use. Moreover, commercial activated carbon with its small pore size could not reduce the color, with a maximum reduction of only 3%.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2017 ◽  
Vol 889 ◽  
pp. 215-220 ◽  
Author(s):  
Siti Anis Mohd Amran ◽  
Khudzir Ismail ◽  
Azil Bahari Alias ◽  
Syed Shatir Asghrar Syed-Hassan ◽  
Ali H. Jawad

Single and mixed coconut shell (CS) and palm kernel shell (PKS) were successfully converted to activated carbon by using potassium hydroxide (KOH) as activating agent. Mixed activated carbon was produced from coconut shell: palm kernel shell at different KOH concentrations of 30%, 40% and 50%. Activation process was performed in a conventional microwave oven at fixed power and time of 600W and 20 minutes respectively. The results showed that activated carbon produced from single and mixed biomass at 40% concentration of KOH exhibited higher adsorption capacity for iodine number and percentage removal of MB with comparison to 30% and 50% of KOH concentrations. The highest BET surface area of 441.19 m2/g was obtained by CSAc-40. Further both CSAc-40 and PKSAc-40 produced an average pore size diameter of less than 2.0 nm which is in the range of micropore region. On contrary, the mixed CSPKSAc-40 produced an average pore size diameter of 6.0 nm which is in the region of mesopore. All the CSAc-40, PKSAc-40 and mixed CSPKSAc-40 showed similar adsorption trend for iodine number and percentage removal of MB. Interestingly, this finding showed that in the mixed activated carbon some chemical reactions might have occurred during the activation process producing mesoporous instead of microporous as obtained by the single biomass activated carbon.


2019 ◽  
Vol 19 (6) ◽  
pp. 3205-3209 ◽  
Author(s):  
Shangqing Lu ◽  
Qirui Lin ◽  
Sufang Wu

This study focuses on the synergy effect of pore size and specific surface area (SSA) on the carbon dioxide sorption performance. Nano CaO-based CO2 sorbents with various pore size (15–55 nm) under similar SSA, and different SSA (14.50–48.90 m2/g) under similar pore size are prepared using selected organic templates. Results indicate that increasing the proportion of macropore in 47–96 nm could significantly improve sorbent’s sorption rate and corresponding sorption capacity. Besides, sorption capacity could be also by SSA. Moreover, partial correlation analysis reveals that sorption capacity is slightly more dependent on average pore size than SSA.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 1-7
Author(s):  
Q. Lu ◽  
G. Sorial

Single and binary solute adsorption of phenol and o-cresol at 23°C on three activated carbons with different pore size were conducted in this study. One granular activated carbon (GAC) F400 and two activated carbon fibers (ACFs) were considered. Anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions were evaluated. For the single solute system, the three adsorbents studied have shown higher adsorptive capacities under oxic conditions as compared to anoxic conditions. The degree of adsorption enhancement was related to the pore size of the adsorbent. For binary adsorption on ACC-10, which has the least average pore size (1.76 nm), the oxic and anoxic adsorption isotherms overlapped, indicating no impact of the presence of molecular oxygen on the adsorptive capacity. Significant differences on adsorptive capacities were noticed for the binary solute adsorption on ACC-15 (2.10 nm) and F400 (2.48 nm). The Ideal Adsorbed Solution Theory (IAST) predicted well all binary systems for ACC-10 and anoxic isotherms on ACC-15 and F400. Poor model predictions for GAC and ACC-15 under oxic conditions were attributed to the oligomerization of the adsorbates on the surface of activated carbon. The unique pore size of ACFs has been shown to be a limiting factor in hampering the oligomerization under oxic conditions.


2021 ◽  
Vol 21 (7) ◽  
pp. 3868-3871
Author(s):  
Jihee Kim ◽  
Jung Eun Lee ◽  
Abid Farooq ◽  
Sang Chai Kim ◽  
Sang-Chul Jung ◽  
...  

In this study, the effect of Ru-Mn bimetallic catalysts in combination with a zeolite support on the removal of toluene in the presence of ozone at room temperature was investigated. Desili-cated HZSM-5 (DZSM) was fabricated and applied as a Ru-Mn support for the removal of toluene (100 ppm) in the presence of ozone (1000 ppm) at room temperature. The surface area, pore volume, and average pore size of Ru-Mn with a DZSM support (RuMn/DZSM) were measured and compared with those of Ru-Mn/HZSM-5 (RuMn/HZSM). The pore size of RuMn/DZSM (69 Å) was much larger than that of RuMn/HZSM-5 (5.5 Å). In addition, the pore volumes of RuMn/DZSM and RuMn/HZSM were 0.64 and 0.25 cm3/g, respectively. Furthermore, the ratios of Mn3+/Mn4+ and Ovacancy/Olattice of RuMn/DZSM were larger than those of RuMn/HZSM-5. The removal efficiency of toluene of RuMn/DZSM was higher than that of RuMn/HZSM due to its larger pore volume, pore size, and the increased ratios of Mn3+/Mn4+ and Ovacancy/Olattice.


2021 ◽  
Vol 11 (9) ◽  
pp. 3994
Author(s):  
Suhdi ◽  
Sheng-Chang Wang

Fine activated carbon (FAC) is prepared from rubber fruit shells (RFS) using two chemical activating agents (ZnCl2 and KOH) and three impregnation ratios (1:3, 1:4, and 1:5). The Brunauer–Emmett–Teller (BET) results show that for a constant impregnation ratio, the ZnCl2 activating agent yields a higher specific surface area than the KOH agent. In particular, for the maximum impregnation ratio of 1:5, the FAC prepared using ZnCl2 has a BET surface area of 456 m2/g, a nitrogen absorption capacity of 150.38 cm3/g, and an average pore size of 3.44 nm. Moreover, the FAC structure consists of 70.1% mesopores and has a carbon content of 80.05 at.%. Overall, the results confirm that RFS, activated using an appropriate quantity of ZnCl2, provides a cheap, abundant, and highly promising precursor material for the preparation of activated carbon with high carbon content and good adsorption properties


Sign in / Sign up

Export Citation Format

Share Document