scholarly journals Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

2020 ◽  
Vol 6 (1) ◽  
pp. 16-30
Author(s):  
Somayeh Raiesdana ◽  

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentative. Objectives: To develop an automated non-subjective method for the detection and quantification of MS lesions. Materials & Methods: This paper focuses on the automatic detection and classification of MS lesions in brain MRI images. Two datasets, one simulated and the other one recorded in hospital, are utilized in this work. A novel hybrid algorithm combining image processing and machine learning techniques is implemented. To this end, first, intricate morphological patterns are extracted from MRI images via texture analysis. Then, statistical textures-based features are extracted. Afterward, two supervised machine learning algorithms, i.e., the Hidden Markov Model (HMM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are employed within a hybrid platform. The hybrid system makes decisions based on ensemble learning. The stacking technique is used to apply predictions from both models o train a perceptron as a decisive model. Results: Experimental results on both datasets indicate that the proposed hybrid method outperforms HMM and ANFIS classifiers with reducing false positives. Furthermore, the performance of the proposed method compared with the state-of-the-art methods, was approved. Conclusion: Remarkable results of the proposed method motivate advanced detection systems employing other MRI sequences and their combination.

Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Samir Rustamov

We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-mentioned methods may be employed in other languages as these methods do not utilize the morphological, syntactical, and lexical analysis in the classification problems.


Author(s):  
Karthik R. ◽  
Ifrah Alam ◽  
Bandaru Umamadhuri ◽  
Bharath K. P. ◽  
Rajesh Kumar M.

In this chapter, the authors use various signal processing techniques to analyze and gain insights on how ECG signals for patients suffering from sleep apnea (sleep apnea or obstructive sleep apnea occurs when the muscles that support the soft tissues in the throat, such as tongue and soft palate, relax temporarily) disease vary with respect to a normal person's ECG. The work has three stages: firstly, to identify waves, complexes, morphology in an ECG which reflect the presence of the disease; second, feature extraction techniques to extract features of ECG such as duration of the wave, amplitude distribution, and morphology classes; and third, detailed clustering (unsupervised) algorithm analysis of the extracted features with efficient feature reduction methodologies such as PCA and LDA. Finally, the authors use supervised machine learning algorithms (SVM, naive Bayes classifier, feed forward neural network, and decision tree) to distinguish between ECG signals with sleep apnea and normal ECG signals.


2020 ◽  
Vol 10 (2) ◽  
pp. 1-26
Author(s):  
Naghmeh Moradpoor Sheykhkanloo ◽  
Adam Hall

An insider threat can take on many forms and fall under different categories. This includes malicious insider, careless/unaware/uneducated/naïve employee, and the third-party contractor. Machine learning techniques have been studied in published literature as a promising solution for such threats. However, they can be biased and/or inaccurate when the associated dataset is hugely imbalanced. Therefore, this article addresses the insider threat detection on an extremely imbalanced dataset which includes employing a popular balancing technique known as spread subsample. The results show that although balancing the dataset using this technique did not improve performance metrics, it did improve the time taken to build the model and the time taken to test the model. Additionally, the authors realised that running the chosen classifiers with parameters other than the default ones has an impact on both balanced and imbalanced scenarios, but the impact is significantly stronger when using the imbalanced dataset.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ratchadaporn Kanawong ◽  
Tayo Obafemi-Ajayi ◽  
Tao Ma ◽  
Dong Xu ◽  
Shao Li ◽  
...  

ZHENG, Traditional Chinese Medicine syndrome, is an integral and essential part of Traditional Chinese Medicine theory. It defines the theoretical abstraction of the symptom profiles of individual patients and thus, used as a guideline in disease classification in Chinese medicine. For example, patients suffering from gastritis may be classified as Cold or Hot ZHENG, whereas patients with different diseases may be classified under the same ZHENG. Tongue appearance is a valuable diagnostic tool for determining ZHENG in patients. In this paper, we explore new modalities for the clinical characterization of ZHENG using various supervised machine learning algorithms. We propose a novel-color-space-based feature set, which can be extracted from tongue images of clinical patients to build an automated ZHENG classification system. Given that Chinese medical practitioners usually observe the tongue color and coating to determine a ZHENG type and to diagnose different stomach disorders including gastritis, we propose using machine-learning techniques to establish the relationship between the tongue image features and ZHENG by learning through examples. The experimental results obtained over a set of 263 gastritis patients, most of whom suffering Cold Zheng or Hot ZHENG, and a control group of 48 healthy volunteers demonstrate an excellent performance of our proposed system.


Author(s):  
Helper Zhou ◽  
Victor Gumbo

The emergence of machine learning algorithms presents the opportunity for a variety of stakeholders to perform advanced predictive analytics and to make informed decisions. However, to date there have been few studies in developing countries that evaluate the performance of such algorithms—with the result that pertinent stakeholders lack an informed basis for selecting appropriate techniques for modelling tasks. This study aims to address this gap by evaluating the performance of three machine learning techniques: ordinary least squares (OLS), least absolute shrinkage and selection operator (LASSO), and artificial neural networks (ANNs). These techniques are evaluated in respect of their ability to perform predictive modelling of the sales performance of small, medium and micro enterprises (SMMEs) engaged in manufacturing. The evaluation finds that the ANNs algorithm’s performance is far superior to that of the other two techniques, OLS and LASSO, in predicting the SMMEs’ sales performance.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Conner Sharpe ◽  
Tyler Wiest ◽  
Pingfeng Wang ◽  
Carolyn Conner Seepersad

Abstract Supervised machine learning techniques have proven to be effective tools for engineering design exploration and optimization applications, in which they are especially useful for mapping promising or feasible regions of the design space. The design space mappings can be used to inform early-stage design exploration, provide reliability assessments, and aid convergence in multiobjective or multilevel problems that require collaborative design teams. However, the accuracy of the mappings can vary based on problem factors such as the number of design variables, presence of discrete variables, multimodality of the underlying response function, and amount of training data available. Additionally, there are several useful machine learning algorithms available, and each has its own set of algorithmic hyperparameters that significantly affect accuracy and computational expense. This work elucidates the use of machine learning for engineering design exploration and optimization problems by investigating the performance of popular classification algorithms on a variety of example engineering optimization problems. The results are synthesized into a set of observations to provide engineers with intuition for applying these techniques to their own problems in the future, as well as recommendations based on problem type to aid engineers in algorithm selection and utilization.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. V67-V79 ◽  
Author(s):  
Yazeed Alaudah ◽  
Motaz Alfarraj ◽  
Ghassan AlRegib

Recently, there has been significant interest in various supervised machine learning techniques that can help reduce the time and effort consumed by manual interpretation workflows. However, most successful supervised machine learning algorithms require huge amounts of annotated training data. Obtaining these labels for large seismic volumes is a very time-consuming and laborious task. We have addressed this problem by presenting a weakly supervised approach for predicting the labels of various seismic structures. By having an interpreter select a very small number of exemplar images for every class of subsurface structures, we use a novel similarity-based retrieval technique to extract thousands of images that contain similar subsurface structures from the seismic volume. By assuming that similar images belong to the same class, we obtain thousands of image-level labels for these images; we validate this assumption. We have evaluated a novel weakly supervised algorithm for mapping these rough image-level labels into more accurate pixel-level labels that localize the different subsurface structures within the image. This approach dramatically simplifies the process of obtaining labeled data for training supervised machine learning algorithms on seismic interpretation tasks. Using our method, we generate thousands of automatically labeled images from the Netherlands Offshore F3 block with reasonably accurate pixel-level labels. We believe that this work will allow for more advances in machine learning-enabled seismic interpretation.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1975 ◽  
Author(s):  
Wei Dong ◽  
Qiang Yang ◽  
Xinli Fang

Accurate generation prediction at multiple time-steps is of paramount importance for reliable and economical operation of wind farms. This study proposed a novel algorithmic solution using various forms of machine learning techniques in a hybrid manner, including phase space reconstruction (PSR), input variable selection (IVS), K-means clustering and adaptive neuro-fuzzy inference system (ANFIS). The PSR technique transforms the historical time series into a set of phase-space variables combining with the numerical weather prediction (NWP) data to prepare candidate inputs. A minimal redundancy maximal relevance (mRMR) criterion based filtering approach is used to automatically select the optimal input variables for the multi-step ahead prediction. Then, the input instances are divided into a set of subsets using the K-means clustering to train the ANFIS. The ANFIS parameters are further optimized to improve the prediction performance by the use of particle swarm optimization (PSO) algorithm. The proposed solution is extensively evaluated through case studies of two realistic wind farms and the numerical results clearly confirm its effectiveness and improved prediction accuracy compared to benchmark solutions.


Sign in / Sign up

Export Citation Format

Share Document