scholarly journals Effective Methodology for Co-Referential Aspect Based Sentiment Analysis of Tourist Reviews

Author(s):  
Kamlesh A. Waghmare ◽  
Sheetal K. Bhala

Tourist reviews are the source of data that is going to be used for the travelers around the world to find the hotels for their stay according to their comfort. In this the hotels are ranked over the parameters or aspects considered keeping travelers in mind. This computation of data sets is done with the help of the machine learning algorithms and the neural network. The knowledge processing done over the reviews generates the sentiment score for each hotel with respect to the aspects defined. Here, the explicit , implicit and co-referential aspects are identified by suppressing the noise. This paper proposes the method that can be best used for the detection of the sentiments with the high accuracy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA41-WA52 ◽  
Author(s):  
Dario Grana ◽  
Leonardo Azevedo ◽  
Mingliang Liu

Among the large variety of mathematical and computational methods for estimating reservoir properties such as facies and petrophysical variables from geophysical data, deep machine-learning algorithms have gained significant popularity for their ability to obtain accurate solutions for geophysical inverse problems in which the physical models are partially unknown. Solutions of classification and inversion problems are generally not unique, and uncertainty quantification studies are required to quantify the uncertainty in the model predictions and determine the precision of the results. Probabilistic methods, such as Monte Carlo approaches, provide a reliable approach for capturing the variability of the set of possible models that match the measured data. Here, we focused on the classification of facies from seismic data and benchmarked the performance of three different algorithms: recurrent neural network, Monte Carlo acceptance/rejection sampling, and Markov chain Monte Carlo. We tested and validated these approaches at the well locations by comparing classification predictions to the reference facies profile. The accuracy of the classification results is defined as the mismatch between the predictions and the log facies profile. Our study found that when the training data set of the neural network is large enough and the prior information about the transition probabilities of the facies in the Monte Carlo approach is not informative, machine-learning methods lead to more accurate solutions; however, the uncertainty of the solution might be underestimated. When some prior knowledge of the facies model is available, for example, from nearby wells, Monte Carlo methods provide solutions with similar accuracy to the neural network and allow a more robust quantification of the uncertainty, of the solution.


Author(s):  
Denis Sato ◽  
Adroaldo José Zanella ◽  
Ernane Xavier Costa

Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, different mitigation systems have been applied in various regions of the world. In this article, a system for detecting animals on highways is presented using computer vision and machine learning algorithms. The models were trained to classify two groups of animals: capybaras and donkeys. Two variants of the convolutional neural network called Yolo (You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by reducing or preventing accidents with animals.


2020 ◽  
Author(s):  
Stephan Rasp

Abstract. Over the last couple of years, machine learning parameterizations have emerged as a potential way to improve the representation of sub-grid processes in Earth System Models (ESMs). So far, all studies were based on the same three-step approach: first a training dataset was created from a high-resolution simulation, then a machine learning algorithms was fitted to this dataset, before the trained algorithms was implemented in the ESM. The resulting online simulations were frequently plagued by instabilities and biases. Here, coupled online learning is proposed as a way to combat these issues. Coupled learning can be seen as a second training stage in which the pretrained machine learning parameterization, specifically a neural network, is run in parallel with a high-resolution simulation. The high-resolution simulation is kept in sync with the neural network-driven ESM through constant nudging. This enables the neural network to learn from the tendencies that the high-resolution simulation would produce if it experienced the states the neural network creates. The concept is illustrated using the Lorenz 96 model, where coupled learning is able to recover the "true" parameterizations. Further, detailed algorithms for the implementation of coupled learning in 3D cloud-resolving models and the super parameterization framework are presented. Finally, outstanding challenges and issues not resolved by this approach are discussed.


2021 ◽  
Vol 19 (3) ◽  
pp. 55-64
Author(s):  
K. N. Maiorov ◽  

The paper examines the life cycle of field development, analyzes the processes of the field development design stage for the application of machine learning methods. For each process, relevant problems are highlighted, existing solutions based on machine learning methods, ideas and problems are proposed that could be effectively solved by machine learning methods. For the main part of the processes, examples of solutions are briefly described; the advantages and disadvantages of the approaches are identified. The most common solution method is feed-forward neural networks. Subject to preliminary normalization of the input data, this is the most versatile algorithm for regression and classification problems. However, in the problem of selecting wells for hydraulic fracturing, a whole ensemble of machine learning models was used, where, in addition to a neural network, there was a random forest, gradient boosting and linear regression. For the problem of optimizing the placement of a grid of oil wells, the disadvantages of existing solutions based on a neural network and a simple reinforcement learning approach based on Markov decision-making process are identified. A deep reinforcement learning algorithm called Alpha Zero is proposed, which has previously shown significant results in the role of artificial intelligence for games. This algorithm is a decision tree search that directs the neural network: only those branches that have received the best estimates from the neural network are considered more thoroughly. The paper highlights the similarities between the tasks for which Alpha Zero was previously used, and the task of optimizing the placement of a grid of oil producing wells. Conclusions are made about the possibility of using and modifying the algorithm of the optimization problem being solved. Аn approach is proposed to take into account symmetric states in a Monte Carlo tree to reduce the number of required simulations.


2020 ◽  
Vol 8 (3) ◽  
pp. 217-221
Author(s):  
Merinda Lestandy ◽  
Lailis Syafa'ah ◽  
Amrul Faruq

Blood donation is the process of taking blood from someone used for blood transfusions. Blood type, sex, age, blood pressure, and hemoglobin are blood donor criteria that must be met and processed manually to classify blood donor eligibility. The manual process resulted in an irregular blood supply because blood donor candidates did not meet the criteria. This study implements machine learning algorithms includes kNN, naïve Bayes, and neural network methods to determine the eligibility of blood donors. This study used 600 training data divided into two classes, namely potential and non-potential donors. The test results show that the accuracy of the neural network is 84.3 %, higher than kNN and naïve Bayes, respectively of 75 % and 84.17 %. It indicates that the neural network method outperforms comparing with kNN and naïve Bayes.


Author(s):  
Savita N. Ghaiwat ◽  
Parul Arora

Cotton leaf diseases have occurred all over the world, including India. They adversely affect cotton quality and yield. Technology can help in identifying disease in early stage so that effective treatment can be given immediately. Now, the control methods rely mainly on artificial means. This paper propose application of image processing and machine learning in identifying three cotton leaf diseases through feature extraction. Using image processing, 12 types of features are extracted from cotton leaf image then the pattern was learned using BP Neural Network method in machine learning process. Three diseases have been diagnosed, namely Powdery mildew, Downy mildew and leafminer. The Neural Network classification performs well and could successfully detect and classify the tested disease.


Author(s):  
Michael Fortunato ◽  
Connor W. Coley ◽  
Brian Barnes ◽  
Klavs F. Jensen

This work presents efforts to augment the performance of data-driven machine learning algorithms for reaction template recommendation used in computer-aided synthesis planning software. Often, machine learning models designed to perform the task of prioritizing reaction templates or molecular transformations are focused on reporting high accuracy metrics for the one-to-one mapping of product molecules in reaction databases to the template extracted from the recorded reaction. The available templates that get selected for inclusion in these machine learning models have been previously limited to those that appear frequently in the reaction databases and exclude potentially useful transformations. By augmenting open-access datasets of organic reactions with artificially calculated template applicability and pretraining a template relevance neural network on this augmented applicability dataset, we report an increase in the template applicability recall and an increase in the diversity of predicted precursors. The augmentation and pretraining effectively teaches the neural network an increased set of templates that could theoretically lead to successful reactions for a given target. Even on a small dataset of well curated reactions, the data augmentation and pretraining methods resulted in an increase in top-1 accuracy, especially for rare templates, indicating these strategies can be very useful for small datasets.


Sentiment analysis, also known as Opinion Mining is one of the hottest topic Nowadays. in various social networking sites is one of the hottest topic and field nowadays. Here, we are using Twitter, the biggest web destinations for people to communicate with each other to perform the sentiment analysis and opinion mining by extracting the tweets by various users. The users can post brief text updates in twitter as it only allows 140 characters in one text message. Hashtags helps to search for tweets dealing with the specified subject. In previous researches, binary classification usually relies on the sentiment polarity(Positive , Negative and Neutral). The advantage is that multiple meaning of the same world might have different polarity, so it can be easily identified. In Multiclass classification, many tweets of one class are classified as if they belong to the others. The Neutral class presented the lowest precision in all the researches happened in this particular area. The set of tweets containing text and emoticon data will be classified into 13 classes. From each tweet, we extract different set of features using one hot encoding algorithm and use machine learning algorithms to perform classification. The entire tweets will be divided into training data sets and testing data sets. Training dataset will be pre-processed and classified using various Artificial Neural Network algorithms such as Reccurent Neural Network, Convolutional Neural Network etc. Moreover, the same procedure will be followed for the Text and Emoticon data. The developed model or system will be tested using the testing dataset. More precise and correct accuracy can be obtained or experienced using this multiclass classification of text and emoticons. 4 Key performance indicators will be used to evaluate the effectiveness of the corresponding approach.


Author(s):  
Nuralem Abizov ◽  
Jia Yuan Huang ◽  
Fei Gao

This paper is focused on developing a platform that helps researchers to create verify and implement their machine learning algorithms to a humanoid robot in real environment. The presented platform is durable, easy to fix, upgrade, fast to assemble and cheap. Also, using this platform we present an approach that solves a humanoid balancing problem, which uses only fully connected neural network as a basic idea for real time balancing. The method consists of 3 main conditions: 1) using different types of sensors detect the current position of the body and generate the input information for the neural network, 2) using fully connected neural network produce the correct output, 3) using servomotors make movements that will change the current position to the new one. During field test the humanoid robot can balance on the moving platform that tilts up to 10 degrees to any direction. Finally, we have shown that using our platform we can do research and compare different neural networks in similar conditions which can be important for the researchers to do analyses in machine learning and robotics


Sign in / Sign up

Export Citation Format

Share Document