scholarly journals A Survey Techniques Used for Prediction of Heart Attack with Machine Learning and Medical Text Mining

Author(s):  
Divya Yadav ◽  
Gayatri Jain

Heart attack is one of the most critical heart disease in the world and affects human life very badly. In heart attack, the heart is unable to push the required amount of blood to other parts of the body. Accurate and on time diagnosis of heart attack is important for heart failure prevention and treatment. The diagnosis of such condition through traditional medical history has been considered as not reliable in many aspects. To classify the healthy people and people with heart attack causes and related problems, noninvasive-based methods such as machine learning are reliable and efficient. In the proposed study, we developed a machine-learning-based diagnosis system for heart attack prediction by using heart disease dataset. We used popular machine learning algorithms for performance evaluation metrics such as classification accuracy, sensitivity and correlation coefficient. The proposed system can easily predict and classify people with heart attack possibilities from healthy people.

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Muhammad Hammad Memon ◽  
Shah Nazir ◽  
Ruinan Sun

Heart disease is one of the most critical human diseases in the world and affects human life very badly. In heart disease, the heart is unable to push the required amount of blood to other parts of the body. Accurate and on time diagnosis of heart disease is important for heart failure prevention and treatment. The diagnosis of heart disease through traditional medical history has been considered as not reliable in many aspects. To classify the healthy people and people with heart disease, noninvasive-based methods such as machine learning are reliable and efficient. In the proposed study, we developed a machine-learning-based diagnosis system for heart disease prediction by using heart disease dataset. We used seven popular machine learning algorithms, three feature selection algorithms, the cross-validation method, and seven classifiers performance evaluation metrics such as classification accuracy, specificity, sensitivity, Matthews’ correlation coefficient, and execution time. The proposed system can easily identify and classify people with heart disease from healthy people. Additionally, receiver optimistic curves and area under the curves for each classifier was computed. We have discussed all of the classifiers, feature selection algorithms, preprocessing methods, validation method, and classifiers performance evaluation metrics used in this paper. The performance of the proposed system has been validated on full features and on a reduced set of features. The features reduction has an impact on classifiers performance in terms of accuracy and execution time of classifiers. The proposed machine-learning-based decision support system will assist the doctors to diagnosis heart patients efficiently.


Author(s):  
Aleksey Klokov ◽  
Evgenii Slobodyuk ◽  
Michael Charnine

The object of the research when writing the work was the body of text data collected together with the scientific advisor and the algorithms for processing the natural language of analysis. The stream of hypotheses has been tested against computer science scientific publications through a series of simulation experiments described in this dissertation. The subject of the research is algorithms and the results of the algorithms, aimed at predicting promising topics and terms that appear in the course of time in the scientific environment. The result of this work is a set of machine learning models, with the help of which experiments were carried out to identify promising terms and semantic relationships in the text corpus. The resulting models can be used for semantic processing and analysis of other subject areas.


Author(s):  
Wan Adlina Husna Wan Azizan ◽  
A'zraa Afhzan Ab Rahim ◽  
Siti Lailatul Mohd Hassan ◽  
Ili Shairah Abdul Halim ◽  
Noor Ezan Abdullah

2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Olutosin Taiwo ◽  
Absalom E. Ezugwu

The smart home is now an established area of interest and research that contributes to comfort in modern homes. With the Internet being an essential part of broad communication in modern life, IoT has allowed homes to go beyond building to interactive abodes. In many spheres of human life, the IoT has grown exponentially, including monitoring ecological factors, controlling the home and its appliances, and storing data generated by devices in the house in the cloud. Smart home includes multiple components, technologies, and devices that generate valuable data for predicting home and environment activities. This work presents the design and development of a ubiquitous, cloud-based intelligent home automation system. The system controls, monitors, and oversees the security of a home and its environment via an Android mobile application. One module controls and monitors electrical appliances and environmental factors, while another module oversees the home’s security by detecting motion and capturing images. Our work uses a camera to capture images of objects triggered by their motion being detected. To avoid false alarms, we used the concept of machine learning to differentiate between images of regular home occupants and those of an intruder. The support vector machine algorithm is proposed in this study to classify the features of the image captured and determine if it is that of a regular home occupant or an intruder before sending an alarm to the user. The design of the mobile application allows a graphical display of the activities in the house. Our work proves that machine learning algorithms can improve home automation system functionality and enhance home security. The work’s prototype was implemented using an ESP8266 board, an ESP32-CAM board, a 5 V four-channel relay module, and sensors.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Waqar ◽  
Hassan Dawood ◽  
Hussain Dawood ◽  
Nadeem Majeed ◽  
Ameen Banjar ◽  
...  

Cardiac disease treatments are often being subjected to the acquisition and analysis of vast quantity of digital cardiac data. These data can be utilized for various beneficial purposes. These data’s utilization becomes more important when we are dealing with critical diseases like a heart attack where patient life is often at stake. Machine learning and deep learning are two famous techniques that are helping in making the raw data useful. Some of the biggest problems that arise from the usage of the aforementioned techniques are massive resource utilization, extensive data preprocessing, need for features engineering, and ensuring reliability in classification results. The proposed research work presents a cost-effective solution to predict heart attack with high accuracy and reliability. It uses a UCI dataset to predict the heart attack via various machine learning algorithms without the involvement of any feature engineering. Moreover, the given dataset has an unequal distribution of positive and negative classes which can reduce performance. The proposed work uses a synthetic minority oversampling technique (SMOTE) to handle given imbalance data. The proposed system discarded the need of feature engineering for the classification of the given dataset. This led to an efficient solution as feature engineering often proves to be a costly process. The results show that among all machine learning algorithms, SMOTE-based artificial neural network when tuned properly outperformed all other models and many existing systems. The high reliability of the proposed system ensures that it can be effectively used in the prediction of the heart attack.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document