scholarly journals Isolation of Pseudomonas species from soil sample for production of Pyoverdine and evaluation of its potential as an antimicrobial agent

Author(s):  
Didhiti Agarwal ◽  
Dhevang Rokkala ◽  
Shreyas Tawde ◽  
Prachi Bhatia ◽  
Sejal Rathod

Pyoverdine, a fluorescent siderophore that have high- affinity for iron is produced by Pseudomonas putida and Pseudomonas aeruginosa that synthesizes it under iron-deficient growth conditions. Pseudomonas species are often encountered in diverse ecological habitats along side being censurable for nosocomial infections spread round the world. Due to these characteristics, there's a growing interest during this microbe for a spread of uses. One such is the production of Pyoverdine, it influences the uptake of iron, along with eliminating the limited iron availability condition. Pyoverdine is important for Pseudomonas putida and Pseudomonas aeruginosa to cause acute infections. Intense research and study led to the invention of Pyoverdines being a crucial source of chelating Iron. This study is predicated on Pyoverdine extracted from two different species of Pseudomonas which will act as an antimicrobial agent for various species including Escherichia coli and Staphylococcus aureus. The organism, i.e., Pseudomonas putida and Pseudomonas aeruginosa, were isolated from soil sample using medias like: Cetrimide media, King’s B media. It had been confirmed using primary biochemical tests, along side species level identification (MALDI - TOF). Isolation was followed by studying the antimicrobial activity of Pyoverdine on different organisms using antibiotics as standard for the same. Results for the tests were obtained, colonies were observed on specific media and zone of inhibition was observed on Muller Hinton plate. Comparative studies were carried out to find which organism used up Pyoverdine or Pyoverdine - Fe complex without using FeCl3 as sole standard source. Thus, these compounds can synergize with conventional antimicrobials, forming a simpler treatment with serving as a useful gizmo

2019 ◽  
Vol 9 (01) ◽  
pp. 46-50
Author(s):  
Ashwak B Al-Hashimy ◽  
Huda S Alagely ◽  
Akeel K Albuaji ◽  
Khalid R Majeed

The present study included the collection of 100 samples from various clinical sources for investigating the presence of P. aeruginosa in those sources, the samples have been collected from some hospitals in Baghdad and Hillah city (Al-qassim General Hospital, ,Al-hillah teaching hospital,and Al-hashimya General hospital ) which included wounds, burns, ear and sputum infections. The study was carried out through October 2017 till the end of March 2018. The samples were identified based on the morphological and microscopically characteristics of the colonies when they were culturing or number of culture media as well as biochemical tests, molecular identification were also used as a final diagnostic test for isolates that were positive as they belong to P.aeruginosa bacteria during previous tests based on the OprD gene which has specific sequences for P.aeruginosa bacteria as a detection gene and also consider as virulence factor so it have a synonyms mechanism to antibiotic resistance . The results of the final diagnosis showed that 38 isolates belong to target bacteria were distributed as 18 of burns, 11 isolates of wounds, 6 isolates of ear infection and 3 isolates of sputum, The examination of the sensitivity of all bacterial isolates was done for elected 38 isolation towards the 9 antibiotic by a Bauer - Kirby and the isolates were resistant for a number of antibiotics used such as Ciprofloxacin 65.7%, Norflaxacin 71%, Imipenem 63.1% Meropenem 68.4%, Gentamicin 65.7%, Amikacin 26.3%, Cefepime 68.4%, Ceftazidime 65.7% and Piperacillin 57.8%.Molecular method , All isolates (38) of P. aeruginosa positive for the diagnostic special gene (OprD) genes (100%).


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Rongmin Zhang ◽  
Zhihai Liu ◽  
Jiyun Li ◽  
Lei Lei ◽  
Wenjuan Yin ◽  
...  

ABSTRACT Metallo-β-lactamase gene bla VIM was identified on the chromosome of four Pseudomonas sp. isolates from a chicken farm, including one Pseudomonas aeruginosa isolate from a swallow (Yanornis martini), one Pseudomonas putida isolate from a fly, and two P. putida isolates from chickens. The four isolates shared two variants of bla VIM-carrying genomic contexts that resemble the corresponding regions of clinical metallo-β-lactamase-producing Pseudomonas spp. Our study suggests that the surveillance of carbapenemase-producing bacteria in livestock and their surrounding environment is urgently needed.


1996 ◽  
Vol 34 (10) ◽  
pp. 67-72 ◽  
Author(s):  
Lu Chih-Jen ◽  
Lee Chi-Mei ◽  
Huang Chiou-Zong

The biodegradation of phenol and chlorophenols by immobilized pure-culture cells was conducted by a series of batch reactors. The microorganisms used in this study were Pseudomonas putida, Psuedomonas testosteroni, Pseudomonas aeruginosa, and Agrobacterium radiobacter. All four species showed the ortho-cleavage pathway to metabolize chlorophenols. Among the four species, P. testosteroni, P. putida, and P. aeruginosa could effectively remove phenol at 200 mg/l. P. testosteroni could effectively remove 2-chlorophenol at 10mg/l. However, the other three species, P. putida, P. aeruginosa, and A. radiobacter, could not effectively remove 2-chlorophenol. Although 3-chlorophenol is a recalcitrant compound, P. testosteroni also could rapidly metabolize 3-chlorophenol at 10 mg/l. The removal of 4-chlorophenol at 10 mg/l by P. testosteroni reached 98% within one day. P. aeruginosa and A. radiobacter also could metabolize 4-chlorophenol after 2 and 7 days of lag period, respectively.


Author(s):  
Bjarke H. Pedersen ◽  
Nicolás Gurdo ◽  
Helle Krogh Johansen ◽  
Søren Molin ◽  
Pablo I. Nikel ◽  
...  

2021 ◽  
Author(s):  
Rebekah A. Jones ◽  
Holly Shropshire ◽  
Caimeng Zhao ◽  
Andrew Murphy ◽  
Ian Lidbury ◽  
...  

AbstractPseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients.


2005 ◽  
Vol 71 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Catalina Arango Pinedo ◽  
Barth F. Smets

ABSTRACT The effects of restriction proficiency and premating exposure to toxicants on conjugal transfer of the TOL plasmid between Pseudomonas spp. was investigated by examinations of filter matings. A Pseudomonas putida KT2442-derived strain carrying a gfp-tagged variant of the TOL plasmid was used as a donor, and both restriction-deficient (PAO1162N) and -proficient (PAO2002N) Pseudomonas aeruginosa strains were used as recipients. The in situ enumeration of conjugation events allowed us to obtain frequency estimates that were unbiased by transconjugant growth or plasmid retransfer. We observed a strong dependence of the plasmid transfer frequency on the initial donor-to-recipient ratio of surface matings, which invalidated the use of mass action-based plasmid transfer kinetic estimators. Careful control of the initial parental cell densities permitted evaluations of the true effects of restriction proficiency and toxicant exposure on TOL transfer. At standard donor-to-recipient ratios (10−3 for PAO1162N and 2 � 101 for PAO2002N) and total cell densities (105 cells/mm2 for PAO1162N and 106 cells/mm2 for PAO2002N), plasmid transfer frequencies without toxicant exposure were approximately 10−7 (events/mm2)−1 for PAO1162N and 10−11 (events/mm2)−1 for PAO2002N based on in situ observations of conjugation events. The enumeration of transconjugants via selective plating yielded transfer frequencies that were up to 1 order of magnitude lower. Premating exposure to sodium dodecyl sulfate (1 to 10 mM) significantly increased the transfer frequency for the restriction-proficient strain PAO2002N (P < 0.05) but not for the restriction-deficient strain PAO1162N. On the other hand, premating exposure to ethanol, toluene, or phenol had no positive effect on the plasmid transfer frequency. Clearly, restriction proficiency provides a strong barrier to interspecific transfer of the TOL plasmid, and this barrier was only marginally attenuated by recipient exposure to toxicants within the ranges examined.


2012 ◽  
Vol 32 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Danila Soares Caixeta ◽  
Thiago Henrique Scarpa ◽  
Danilo Florisvaldo Brugnera ◽  
Dieyckson Osvani Freire ◽  
Eduardo Alves ◽  
...  

The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Mathias Müsken ◽  
Stefano Di Fiore ◽  
Andreas Dötsch ◽  
Rainer Fischer ◽  
Susanne Häussler

The establishment of bacterial biofilms on surfaces is a complex process that requires various factors for each consecutive developmental step. Here we report the screening of the comprehensive Harvard Pseudomonas aeruginosa PA14 mutant library for mutants exhibiting an altered biofilm phenotype. We analysed the capability of all mutants to form biofilms at the bottom of a 96-well plate by the use of an automated confocal laser-scanning microscope and found 394 and 285 genetic determinants of reduced and enhanced biofilm production, respectively. Overall, 67 % of the identified mutants were affected within genes encoding hypothetical proteins, indicating that novel developmental pathways are likely to be dissected in the future. Nevertheless, a common theme that emerged from the analysis of the genes with a predicted function is that the establishment of a biofilm requires regulatory components that are involved in survival under microaerophilic growth conditions, arginine metabolism, alkyl-quinolone signalling, pH homeostasis and the DNA repair system.


Author(s):  
C. O. Ezeador ◽  
P. C. Ejikeugwu ◽  
S. N. Ushie ◽  
N. R. Agbakoba

This study was aimed to isolate and identify Pseudomonas aeruginosa and to determine the prevalence rate of isolated P. aeruginosa in Hospitals in Onitsha. Isolates of P. aeruginosa were recovered from both clinical and environmental sources using Cetrimide agar, Blood agar, Mueller-Hinton agar and MacConkey agar.  All the inoculated plates were incubated at 37°C for 24-48 hours and growth was evaluated on these media. Isolates were identified on the basis of standard bacteriological methods like morphology, colonial characteristics, smell in culture, haemolysis, as well as pigment production on these media. All suspected isolates were further characterized and identified by many biochemical reactions. Results revealed that only 22 (18.3%) isolates were P. aeruginosa, while other 98 (81.7%) represented other bacterial genera. The 22 isolates included 19 (86.4%) environmental isolates and 3 (13.6%) clinical isolates. Pseudomonas aeruginosa was most commonly isolated from sink (13.6%), then mops and cleaning buckets (9.1%) and least from theatre bed, nasal swab, floor, disinfectant, ear and wound swab (4.5%). The pigment varied from bluish-green to yellowish-green with a grape-like odor. All isolates were Gram negative, produced β-hemolysis on blood agar and were motile. The biochemical tests showed all the isolates to be strongly positive for catalase, oxidase, citrate, and casein hydrolysis. The prevalence rate of P. aeruginosa is relatively high and its isolation from sources like sinks and theatre bed could be suggestive of the role of this pathogen in nosocomial infections.


Sign in / Sign up

Export Citation Format

Share Document