scholarly journals Study of culture filtrates of anthracnose pathogen strains for use in in vitro flax breeding for pathogen resistance

2021 ◽  
pp. 85-89
Author(s):  
N. V. Proletova
2002 ◽  
Vol 70 (3) ◽  
pp. 1121-1128 ◽  
Author(s):  
Kent B. Marty ◽  
Christopher L. Williams ◽  
Linda J. Guynn ◽  
Michael J. Benedik ◽  
Steven R. Blanke

ABSTRACT Serratia marcescens culture filtrates have been reported to be cytotoxic to mammalian cells. Using biochemical and genetic approaches, we have identified a major source of this cytotoxic activity. Both heat and protease treatments abrogated the cytotoxicity of S. marcescens culture filtrates towards HeLa cells, suggesting the involvement of one or more protein factors. A screen for in vitro cytotoxic activity revealed that S. marcescens mutant strains that are deficient in production of a 56-kDa metalloprotease are significantly less cytotoxic to mammalian cells. Cytotoxicity was significantly reduced when culture filtrates prepared from wild-type strains were pretreated with either EDTA or 1,10-phenanthroline, which are potent inhibitors of the 56-kDa metalloprotease. Furthermore, cytotoxic activity was restored when the same culture filtrates were incubated with zinc divalent cations, which are essential for enzymatic activity of the 56-kDa metalloprotease. Finally, recombinant expression of the S. marcescens 56-kDa metalloprotease conferred a cytotoxic phenotype on the culture filtrates of a nonpathogenic Escherichia coli strain. Collectively, these data suggest that the 56-kDa metalloprotease contributes significantly to the in vitro cytotoxic activity commonly observed in S. marcescens culture filtrates.


2003 ◽  
Vol 28 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Maria de Lourdes R. Duarte ◽  
Simon A. Archer

Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis), causal agent of root rot and stem blight on black pepper (Piper nigrum), produces secondary metabolites with toxigenic properties, capable of inducing vein discoloration in detached leaves and wilting in transpiring microcuttings. Production of F. solani f. sp. piperis (Fsp) toxic metabolites reached a peak after 25 days of static incubation on potato sucrose broth at 25 ºC under illumination. Changes in the pH of the culture filtrate did not alter the effect of toxic metabolites. However, when the pH was changed before the medium had been autoclaved, a more intense biological response was observed, with an optimum at pH 6.0. Isolates that produced red pigments in liquid cultures were more efficient in producing biologically active culture filtrates than those which produced pink coloured or clear filtrates suggesting that these pigments could be related to toxigenic activity. Detached leaves of seven black pepper cultivars and Piper betle showed symptoms of vein discoloration after immersion in autoclaved and non-autoclaved Fsp culture filtrates indicating the thermostable nature of these toxic metabolites.


2010 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Hugo F. Rivera ◽  
Erika P. Martínez ◽  
Jairo A. Osorio ◽  
Edgar Martínez

<p>Phytophthora infestans (Mont.) de Bary, agente causal de la gota de la papa, es considerado la principal limitante de la producción de este cultivo en Colombia. El control habitual del patógeno se realiza con fungicidas de tipo sistémico, que incrementan los costos de producción, pueden inducir la resistencia del patógeno y tiene un impacto negativo en el ambiente. Por tanto, se llevó a cabo este estudio con el propósito de buscar alternativas amigables con el ambiente, que hagan parte de un paquete tecnológico eficaz de control. Dos cepas nativas de Psedomonas fluorescens (039T y 021V), provenientes de cultivos de papa, fueron evaluadas contra P. infestans. Las suspensiones bacterianas y los biosurfactantes parcialmente purificados (BPP), producidos por éstas (obtenidos en medio mínimo de sales con querosén), fueron aplicados sobre foliolos desprendidos en ensayos in vitro y experimentos in vivo en plantas de papa, en condiciones controladas en casa de malla. Los resultados demostraron la capacidad que tienen los biosurfactantes y las suspensiones bacterianas para controlar al patógeno, ya que el BPP 039T logró reducir el nivel de severidad de la enfermedad en 79,9% in vitro y 38,5% in vivo, mientras que el BPP 021V redujo en 78,7% in vitro y 30,2% in vivo. Las suspensiones bacterianas redujeron el nivel de severidad en 72,4% (039T) y 66,1% (021V) en las evaluaciones in vitro y 35% en los experimentos in vivo. Los resultados de esta investigación muestran el potencial que tienen los biosurfactantes para el control de la gota en Colombia.</p><p> </p><p><strong>Evaluation of Biosurfactants Produced by Pseudomonas fluorescens for Potato Late Blight Control (Phytophthora infestans (Mont) de Bary) Under Controlled Conditions</strong></p><p>Phytophthora infestans (Mont.) de Bary, causal agent of potato late blight is considered the main limiting pathogen for the production of this crop in Colombia. The usual control of the disease has been performed with systemic fungicides which increase production costs, can induce pathogen resistance and have a negative impact on the environment. Therefore, this study was carried out in order to find effective and environmentally friendly control alternatives for potato late blight. Two Pseudomonas fluorescens native strains (039T and 021V) isolated from potato crops were evaluated against P. infestans. Bacterial suspensions (obtained from minimal salts medium added with kerosene) and partially purified biosurfactants (BPP) were applied on detached leaflets for in vitro assays and on potato plants in greenhouse, for in vivo assays and the measure of inhibitory effect of the disease was assessed. The results showed the ability of P. fluorescens biosurfactants and bacterial suspensions to control the pathogen. BPP 039T was able to reduce the level of severity disease by 79.9% in vitro and 38.5% in vivo, whereas BPP 021V decreased 78.7% in vitro and 30.2% in vivo. Bacterial suspensions reduced the severity level in 72.4% (039T) and 66.1% (021V) in vitro assessments and 35% in the in vivo experiment. These results show the potential of P. fluorescens biosurfactants to control the potato late blight in Colombia.</p>


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 634-637
Author(s):  
R. Nicoletti ◽  
F. Raimo ◽  
E. Cozzolino

As tobacco black shank epidemics caused by Phytophthora nicotianae occurred in central Italy in the late 1990s, fungal antagonists of the pathogen were searched in the rhizosphere of tobacco plants. Isolates of Aspergillus sydowii, Fusarium chlamydosporum, Gliocladium roseum, Penicillium brevicompactum, P. chrysogenum, Scopulariopsis candida and Trichoderma harzianum were recovered. Antagonism of these isolates toward P. nicotianae was evaluated in vitro: even if no hyphal interactions were observed in dual cultures, aberration in mycelial growth and morphology of sporangia occurred in most cases. Unlike those of T. harzianum, concentrated culture filtrates of A. sydowii, F. chlamydosporum, G. roseum, P. brevicompactum, P. chrysogenum, inhibited growth of all P. nicotianae isolates tested, while culture filtrates of S. candida caused aberrant mycelial growth.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 461-465 ◽  
Author(s):  
A.M. Pennisi ◽  
M.R. Abenavoli ◽  
B. Maimone ◽  
L. Di Dio

In this study, we determined the amount of H<sub>2</sub>O<sub>2</sub> released by sunflower callus cultures challenged by both crude hyphal wall extracts and culture filtrates of 26 Phomopsis isolates from sunflower of worldwide origin (Argentina, France, Italy, Yugoslavia, Rumania). The amount of H<sub>2</sub>O<sub>2</sub> released by callus cultures and the production time-course response, however, did not correlate with both the amount of electrolytes released by sunflower leaf disks treated with crude culture filtrates and the results of pathogenicity tests on sunflower seedlings. Only few isolates induced a time-course response indicative of an oxidative burst. This would suggest that elicitors extracted from hyphal walls are not involved in this host-pathogen recognition system and toxic metabolites produced by Phomopsis in liquid cultures are not pathogenicity factors.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Erin H. Hill ◽  
Peter S. Solomon

Abstract Background The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)—secreted, membrane-bound nanoparticles containing molecular cargo—being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. Results Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC–MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. Conclusion We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.


1970 ◽  
Vol 48 (6) ◽  
pp. 1073-1077 ◽  
Author(s):  
Yu-Ho Chan ◽  
W. E. Sackston

Pectin methylesterase (PME), endopolygalacturonase (Endo-PG), exopolygalacturonase (Exo-PG), pectin trans-eliminase (PTE), polygalacturonase trans-eliminase (PGTE), cellulase, and cellobiase activities were investigated in culture filtrates of Sclerotium bataticola, and in extracts of inoculated and uninoculated sunflower stems. All of the enzymes except PTE were produced in culture filtrates of the pathogen and in diseased host tissues. Only PME was detected in healthy control plants.


2015 ◽  
Vol 197 ◽  
pp. 573-578 ◽  
Author(s):  
Marco Antonio Ramírez-Mosqueda ◽  
Lourdes Georgina Iglesias-Andreu ◽  
Mauricio Luna-Rodríguez ◽  
Alejandro Antonio Castro-Luna

1999 ◽  
Vol 12 (5) ◽  
pp. 419-429 ◽  
Author(s):  
S. L. Woo ◽  
B. Donzelli ◽  
F. Scala ◽  
R. Mach ◽  
G. E. Harman ◽  
...  

The biocontrol strain P1 of Trichoderma harzianum was genetically modified by targeted disruption of the single-copy ech42 gene encoding for the secreted 42-kDa endochitinase (CHIT42). Stable mutants in which ech42 was interrupted, and unable to produce CHIT42, were obtained and characterized. These mutants lacked the ech42 transcript, the protein, and endochitinase activity in culture filtrates, and they were unable to clear a medium containing colloidal chitin. Other chitinolytic and glucanolytic enzymes expressed during mycoparasitism were not affected by the disruption of ech42. The disrupted mutant D11 grew and sporulated similarly to the wild type. In vitro antifungal activity of the ech42 disruptant culture filtrates against Botrytis cinerea and Rhizoctonia solani was reduced about 40%, compared with wild type; antifungal activity was fully restored by adding an equivalent amount of CHIT42 as secreted by P1. The mutant exhibited the same biocontrol effect against Pythium ultimum as strain P1, but the antagonism against B. cinerea on bean leaves by the mutant was significantly reduced (33% less biocontrol), compared with strain P1. Conversely, the endochitinase-deficient mutant performed better than the wild type (16% improvement of survival) in biocontrol experiments in soil infested with the soilborne fungus R. solani. These results indicate that the antagonistic interaction between the T. harzianum strain and various fungal hosts is based on different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document