scholarly journals UJI TAHANAN TARIK MODEL FONDASI TIANG DALAM TANAH PASIR

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Andikanoza Pradiptiya ◽  
Yuwono Yuwono

ABSTRACTCertain buildings limit displacement of pile foundation with relatively small value so as not to cause damage to the structure. Loading test directly in the field requires a very high cost. To overcome this problem, it can be approached with a more economical cost, that is to move it into a certain scale models. The method used is to create a media model as a test box testing, by simulating the actual model in the form of a scale model. This method is fairly cheap and efficient as it can be used for various models and can be used repeatedly. The study was conducted using models of reduced scale single pile foundation made of concrete with a length of 0.2 m, 0.3 m, 0.4 m and each diameter of 0.02 m, 0.03 m, 0.04 m. Pile model is jacked in clay soil that has been compacted in a box and then given a tensile load test referring to ASTM D3689-07 procedure E (Constant Rate of Uplift Test). Mobilization of uplift resistance is determined from the pile frictional resistance force and displacement of the pile. The results showed that the frictional resistance value is reduced to the value at a particular displacement or at critical displacement pile.Key words : uplift resistance , sand, mini pile.ABSTRAKBeberapa konstruksi bangunan memberikan batasan kepada perpindahan tiang yang terjadi dengan nilai yang relatif kecil supaya tidak menyebabkan kerusakan struktur. Metode uji yang dipakai adalah membuat box uji model sebagai media pengujian, dengan mensimulasikan model yang sebenarnya ke dalam bentuk model skala. Penelitian dilakukan menggunakan model fondasi tiang tunggal skala tereduksi yang terbuat dari beton dengan panjang 0,2 m, 0,3 m, 0,4 m dan masing-masing diameter 0,02 m, 0,03 m, 0,04 m. Model tiang dipasang dengan cara ditekan pada tanah pasir yang sudah dipadatkan dalam box uji kemudian diberikan beban tarik yang mengacu pada ASTM D3689-07 prosedur E (Constant Rate of Uplift Test). Tahanan tarik tiang ditentukan tahanan gesek satuan dan perpindahan tiang berdasarkan variasi pengaruh diameter dan panjang tiang. Hasil penelitian menunjukkan bahwa nilai tahanan gesek satuan ultimit (fs) dan perpindahan kritis (δc) relatif menurun dengan bertambahnya ukuran diameter (d) tiang tetapi sebaliknya nilai fs tiang meningkat dengan dengan bertambahnya ukuran panjang (L) tiang. Semakin besar panjang tiang memperlihatkan kecenderungan bahwa pengaruh tekanan tanah lateral pasir terhadap selimut tiang meningkat sehingga memberikan kontribusi tahanan gesek yang lebih besar, sedangkan penambahan diameter tiang tidak meningkatkan tekanan tanah lateral pasir terhadap tiang.Katakunci : Tahanan tarik, pasir, Model Fondasi tiang.

2019 ◽  
Vol 1 (3) ◽  
pp. 219-224
Author(s):  
Andikanoza Pradiptiya ◽  
A’isyah Salimah

AbstractSome buildings impose limits on the foundation displacement that occur with relatively small values so as not to cause structural damage. The test method used was to make a model test box as a testing medium by simulating the actual model into the form of a scale model. The study was conducted using a single pile foundation with reduced scale, made of concrete with a diameter of 0.02 m, 0.03 m, 0.04 m and the length of each pile was 0.4 m. The pile model was mounted by pressing into the clay that had been compacted in the test box and then given a tensile load which refers to ASTM D3689-07 procedure E (Constant Rate of Uplift Test). Mobilization of pile friction resistance at critical displacement determined the frictional resistance of the ultimate pile units. The test results showed that the greater the diameter of the pile, the frictional resistance of the ultimate pile units would increase. The increase in frictional resistance of the ultimate pile units showed an average value of around 17.1%.Keywords : Pile foundation, Pile diameter, Friction resistance.AbstrakMeningkatnya pembangunan hunian mengakibatkan naiknya permintaan akan batako, hal ini tentunya Beberapa konstruksi bangunan memberikan batasan kepada perpindahan tiang yang terjadi dengan nilai yang relatif kecil supaya tidak menyebabkan kerusakan struktur. Metode uji yang dipakai adalah membuat box uji model sebagai media pengujian, dengan mensimulasikan model yang sebenarnya ke dalam bentuk model skala. Penelitian dilakukan menggunakan model pondasi tiang tunggal penampang lingkaran lingkaran skala tereduksi yang terbuat dari beton dengan diameter 0,02 m, 0,03 m, 0,04 m dan panjang  masing-masing tiang adalah 0,4 m. Model tiang dipasang dengan cara ditekan pada tanah lempung yang sudah dipadatkan dalam box uji kemudian diberikan beban tarik yang mengacu pada ASTM D3689-07 prosedur E (Constant Rate of Uplift Test). Mobilisasi tahanan gesek tiang pada perpindahan tiang kritis menetukan tahanan gesek satuan ultimit. Hasil uji memperlihatkan bahwa semakin besar diameter tiang, tahanan gesek satuan ultimit tiang akan bertambah. Peningkatan tahanan gesek satuan ultimit tiang menunjukkan rata-rata sekitar 17,1 %.Kata kunci : Pondasi Tiang, Diameter Tiang, Tahanan Gesek Tiang.


2018 ◽  
Vol 195 ◽  
pp. 03005
Author(s):  
Ferry Fatnanta ◽  
Andarsin Ongko

Peat is a kind of soil with a very low bearing capacity and high compressibility. Generally, a building construction on peat is done by using a wooden pile foundation. However, the length of the wooden piles is sometimes limited and causes the friction strength between the soil and wooden piles to became suboptimal. In order to enhance the bearing capacity of the foundation, the cross-sectional area of the foundation needs to be enlarged. One of the solutions for this problem is through helical piles. There are two methods to determine the helical pile`s bearing capacity, i.e. individual bearing and cylindrical shear methods. In this paper, bearing capacity prediction was discussed. A foundation load test was thoroughly done by a constant rate of penetration. This test consisted of compression and tension tests. The result was analyzed by individual bearing and cylindrical shear methods and next compared to each other. The result of the analysis has shown that the individual bearing method was more suitable in predicting helical piles’ bearing capacity since it produced the lowest error rate, with a magnitude of 21,31%.


2017 ◽  
Vol 83 (852) ◽  
pp. 17-00050-17-00050 ◽  
Author(s):  
Tsuyoshi FUKASAWA ◽  
Shigeki OKAMURA ◽  
Tomohiko YAMAMOTO ◽  
Nobuchika KAWASAKI ◽  
Satoru INABA ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yiwei Lu ◽  
Hanlong Liu ◽  
Changjie Zheng ◽  
Xuanming Ding

X-section cast-in-place concrete pile is a new type of foundation reinforcement technique featured by the X-shaped cross-section. Compared with a traditional circular pile, an X-section pile with the same cross-sectional area has larger side resistance due to its larger cross-sectional perimeter. The behavior of static loaded X-section pile has been extensively reported, while little attention has been paid to the dynamic characteristics of X-section pile. This paper introduced a large-scale model test for an X-section pile and a circular pile with the same cross-sectional area subjected to cyclic axial load in sand. The experimental results demonstrated that cyclic axial load contributed to the degradation of shaft friction and pile head stiffness. The dynamic responses of X-section pile were determined by loading frequency and loading amplitude. Furthermore, comparative analysis between the X-section pile and the circular pile revealed that the X-section pile can improve the shaft friction and reduce the cumulative settlement under cyclic loading. Static load test was carried out prior to the vibration tests to investigate the ultimate bearing capacity of test piles. This study was expected to provide a reasonable reference for further studies on the dynamic responses of X-section piles in practical engineering.


2018 ◽  
Vol 21 (14) ◽  
pp. 2130-2142 ◽  
Author(s):  
Youngkug Jo ◽  
Jeongyun Do

A study has been conducted on a bond strength test of ethylene-vinyl acetate–modified ultra-high early strength cement slurry–coated rebar embedded in concrete and did a flexural loading test with the aim to verifying the feasibility of early strength cement slurry–coated rebar as a replacement for epoxy-coated rebar. Pull-out bond properties of the early strength cement slurry–coated rebar embedded in concrete with a 28-day compressive strength of 27 MPa depending on the coating thicknesses, curing ages, and polymer–cement ratios were experimentally investigated and mutually compared with two respective references consisting of a plain steel rebar and an epoxy-coated one. The effects of the uncoated, early strength cement slurry–coated, or epoxy-coated rebar embedded in a concrete beam with dimensions of 250, 350, and 3000 mm for the depth, height, and length, respectively, on the flexural loading capacity were investigated. From the results of this study, it was concluded that the early strength cement slurry–coated rebar with a coating thickness of 100 µm, and a curing time of 7 days could be competitive enough to replace epoxy-coated rebar based on the bond strength and flexural loading test results.


1985 ◽  
Vol 22 (4) ◽  
pp. 592-599
Author(s):  
R. G. Horvath

A multiple loading testing method is suggested, which permits testing a single drilled pier foundation under three different conditions of load support. The pier may be tested under conditions of combined shaft and end-bearing resistance, end-bearing resistance only, and shaft resistance only. The advantages of this multiple loading test method include observation of the load-transfer and displacement behaviours of the pier under these three different support conditions and verification of the values obtained for the components of load support, i.e., shaft and end-bearing resistance, all from a single test pier.A special base load cell capable of performing a different function during each cycle of loading is required. A suitable load cell, consisting of a series of Freyssi flatjacks, and the method of operation are described.A multiple loading test procedure was used successfully as part of a field investigation program on full-scale pier sockets in weak shale. Data on the load-displacement behaviour of the pier tested using the multiple loading method are reported. Information concerning piers tested using conventional single loading methods are provided for comparison.The multiple loading test results were in good agreement with results obtained from conventional testing methods. Thus the multiple loading test method provides an economical means of obtaining a large amount of design information for drilled pier foundation systems, using a single test pier. Key words: field load test, multiple loading, drilled piers and caissons, shaft resistance, end-bearing resistance, combined shaft and end-bearing resistances, base load cell, shale.


2018 ◽  
Vol 216 ◽  
pp. 02027 ◽  
Author(s):  
Khabibulla Turanov ◽  
Andrey Gordienko

The purpose of this paper is to calculate kinematic parameters of a railway car moving with a tailwind for designing a classification hump. The calculation of kinematic parameters is based on the d'Alembert principle, and the physical speed and distance formula for uniformly accelerated or uniformly decelerated motions of a body. By determining a difference between two components - gravitational force of a car and the resistance force of all kinds (frictional resistance, air and wind resistance, resistance from switches and curves, snow and frost resistance), which take place at different sections of a hump profile, the authors calculated the car acceleration at various types of car resistance, as well as time and speed of its movement. Acceleration, time and speed were plotted as a function of the length of a hump profile section. The research results suggest that permissible impact velocities of cars can be achieved by changing profiles of projected hump sections or by using additional hump retarders.


2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


2018 ◽  
Vol 48 (8) ◽  
pp. 1364-1383 ◽  
Author(s):  
Gabriel Fedorko ◽  
Vieroslav Molnár ◽  
Peter Michalik ◽  
Miroslav Dovica ◽  
Tatiana Kelemenová ◽  
...  

This paper is dedicated to investigating the properties of smooth conveyor belts through a tensile loading test, with the aim of examining the behavior of the inner structure of the belt samples. When the belt is subjected to a long-term strain, the belt relaxation effect is observed and changes may occur to the inner structure of the belt. The tensile test at constant velocity determines the load strength limit of the strip samples. The experiment has also shown the phenomenon of relaxation of the samples after the load. Metro-tomographic analysis is used to observe the behavior of the internal structure of the belt sample after the load. The obtained results indicate the initial damage of the inner structure of the conveyor belt occurred at the value of 2157 N. Under this load, the maximum damage size was 4.8 mm. This confirms the suitability of the method for tracking changes in the internal structure.


Sign in / Sign up

Export Citation Format

Share Document