scholarly journals ELECTROCHEMICAL REDUCTION OF SELENIUM IONS FROM ORGANIC SOLUTION

2020 ◽  
pp. 43-48
Author(s):  
S.P. Javadova ◽  

Due to the unique properties of metal dichalcogenides, they are wide used in various fields of nano- and optoelectronics. Bi2Se3 is one of the promising n-type semiconductor materials belonging to the Av – Bvı group, with a band gap of 0.3 eV. To obtain these compounds by co-electrodeposition, we study the electroreduction of the initial components separately. Therefore, the study is devoted to the electrochemical reduction of selenite ions from the ethylene glycol solution. By drawing cyclic and linear polarization curves on Pt electrodes, the kinetics, the mechanism of the process, and the influence of various factors on the electroreduction of selenite ions are studied. Using the obtained data on the influence of temperature, the effective activation energy was calculated by the Gorbachov method. The calculation results show that the electroreduction of selenite ions from ethylene glycol is accompanied by electrochemical kinetics closer to diffusion

2021 ◽  
Vol 68 (1) ◽  
pp. 185-192
Author(s):  
Vusala Asim Majidzade ◽  
Akif Shikhan Aliyev ◽  
Mahmoud Elrouby ◽  
Dunya Mahammad Babanly ◽  
Dilgam Babir Tagiyev

The electrochemical reduction of iron (III) ions into zero-valent iron from a solution of ethylene glycol was accomplished. The kinetics and mechanism of the electroreduction process were investigated by cyclic and linear polarization techniques. The influence of temperature, potential sweep rate, and concentration of iron (III) ions on the electroreduction process was also studied. The observed values of effective activation energy revealed that the investigated electroreduction process is accompanied by mixed kinetics control. Moreover, the results of SEM and X-ray diffraction analysis confirmed the deposition of thin Fe films under the optimized conditions.


2021 ◽  
Vol 132 ◽  
pp. 107155
Author(s):  
Hang Yusen ◽  
Yang Tao ◽  
Xu Zhengyang ◽  
Zeng Yongbin

1989 ◽  
Vol 11 (11) ◽  
pp. 744-751 ◽  
Author(s):  
Andres Veide ◽  
Torgny Lindbäck ◽  
Sven-Olof Enfors

2020 ◽  
Vol 61 (1) ◽  
pp. 133-139
Author(s):  
Alexander E. Panasenko ◽  
◽  
Lyudmila A. Zemnukhova ◽  
Nicolay P. Shapkin ◽  
◽  
...  

To isolate silicon-containing products from plant materials, the reaction of interaction of rice husks with triethanolamine and ethylene glycol have been investigated. The effect of pretreatment of raw materials and the reaction conditions on the yield of soluble products containing silicon has been studied. It has been shown that the highest enrichment of rice husks with silicon occurs upon its treatment with concentrated hydrochloric acid and the Schweitzer's reagent. The highest degree of silicon extraction (69%) was achieved at using native rice husks and vanadyl acetylacetonate as a catalyst. The resulting solution contained silicon in the form of silatrane fragments. In order to isolate a silicon-containing product from the ethylene glycol solution, which would have the prospect of practical use and the maximum silicon yield, the heterofunctional polycondensation method was applied. It has appeared to be possible to isolate solid products using acetylacetonates of trivalent and tetravalent metals, which formed metal siloxanes. The structure of the obtained compounds has been confirmed by the element and X-ray diffraction analysis, as well as by the IR spectroscopy. When using rice husk chaffs as a silicon source, the product of the reaction with ethylene glycol and triethanolamine has appeared to be an irregular copolymer comprising amorphous silicon dioxide fragments and cyclic fragments similar in structure to that of silatranes. The application of metal acetylacetonates has made it possible to isolate silicon derivatives in the form of organometallic siloxanes. Тhe yield of metalsiloxanes increased in the sequence Zr < Fe < Al. Apparently, this was due to formation of lattice structures in the case of trivalent aluminum and iron, while zirconium had two remaining acetylacetonate groups and, in this case, its functionality was lower than for trivalent metals, which was confirmed by the spectral data.


1963 ◽  
Vol 41 (1) ◽  
pp. 889-895 ◽  
Author(s):  
Phyllis S. Roberts

Ethylene glycols have been found to allow activation of purified preparations of human plasminogen. The activity of the enzyme formed, plasmin, was measured using TAMe (p-toluene-sulphonyl-L-arginine methyl ester) as a substrate. In 50% (v/v) solutions of these compounds at pH 7.6 and 30 °C, plasmin accumulated faster in diethylene and triethylene glycols than in glycerol, but in ethylene glycol no plasmin was found. When lower concentrations of ethylene glycol (from zero to 50%) and shorter times of incubation were used, plasmin was found. With equimolar solutions (4.3 M) of glycerol and the three glycols, only diethylene glycol showed a fast rate of accumulation of plasmin. A 50% triethylene glycol solution partially inhibited the rate of spontaneous activation but stabilized the plasmin formed and therefore enzyme accumulated. At room temperature more plasmin accumulated than at higher temperatures when plasminogen was incubated in 50% triethylene glycol solution, and no plasmin was found when plasminogen was incubated at pH 7.6, 30 °C, in 50% solutions of propylene glycols, several ethers of the ethylene glycols, several polymers of various glycols, and dioxane.


Sign in / Sign up

Export Citation Format

Share Document