scholarly journals Fabrication and extraction of silicon-containing products from rice husks

2020 ◽  
Vol 61 (1) ◽  
pp. 133-139
Author(s):  
Alexander E. Panasenko ◽  
◽  
Lyudmila A. Zemnukhova ◽  
Nicolay P. Shapkin ◽  
◽  
...  

To isolate silicon-containing products from plant materials, the reaction of interaction of rice husks with triethanolamine and ethylene glycol have been investigated. The effect of pretreatment of raw materials and the reaction conditions on the yield of soluble products containing silicon has been studied. It has been shown that the highest enrichment of rice husks with silicon occurs upon its treatment with concentrated hydrochloric acid and the Schweitzer's reagent. The highest degree of silicon extraction (69%) was achieved at using native rice husks and vanadyl acetylacetonate as a catalyst. The resulting solution contained silicon in the form of silatrane fragments. In order to isolate a silicon-containing product from the ethylene glycol solution, which would have the prospect of practical use and the maximum silicon yield, the heterofunctional polycondensation method was applied. It has appeared to be possible to isolate solid products using acetylacetonates of trivalent and tetravalent metals, which formed metal siloxanes. The structure of the obtained compounds has been confirmed by the element and X-ray diffraction analysis, as well as by the IR spectroscopy. When using rice husk chaffs as a silicon source, the product of the reaction with ethylene glycol and triethanolamine has appeared to be an irregular copolymer comprising amorphous silicon dioxide fragments and cyclic fragments similar in structure to that of silatranes. The application of metal acetylacetonates has made it possible to isolate silicon derivatives in the form of organometallic siloxanes. Тhe yield of metalsiloxanes increased in the sequence Zr < Fe < Al. Apparently, this was due to formation of lattice structures in the case of trivalent aluminum and iron, while zirconium had two remaining acetylacetonate groups and, in this case, its functionality was lower than for trivalent metals, which was confirmed by the spectral data.

2017 ◽  
Vol 748 ◽  
pp. 7-11
Author(s):  
Xiao Zhen Liu ◽  
Wei Ren Rong ◽  
Xiao Zhou Liu ◽  
Xiao Hui Ren ◽  
Jie Chen ◽  
...  

The cerium dioxide films were prepared with cerium foils as raw materials by anodization in Na2C2O4-NH3∙H2O-H2O-(CH2OH)2 electrolyte. The anodic cerium oxide film was heat treated at 550°C. The cerium dioxide films were characterized with X-ray diffraction (XRD), energy-dispersive analyses of X-ray (EDAX), Fourier transform infrared (FTIR) techniques and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is semi crystalline film. The heat treated anodic cerium oxide film at 550°C is the fluorite-structured cerium dioxide film, and the crystal structure of the cerium dioxide film becomes more complete than that of the anodic cerium oxide film. The cerium dioxide film is porous film. The water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 550°C. The cerium dioxide film has strong absorption in the range of 1400~4000cm-1.


2011 ◽  
Vol 287-290 ◽  
pp. 1675-1679
Author(s):  
Hong Shao ◽  
Ning Cao

A series of sodium bentonites and cetyl tri methyl ammonium bromide as raw materials were prepared to the modified organic composite montmorillonites. The performance characterization of the modified organic bentonite was observed by means of IR spectroscopy, X-ray diffraction, scanning electron microscopy. And the modified organic bentonite was applied into the pretreatment of landfill leachate, which was with the COD as high as 20000-37000 mg/L. The COD removal rate was invested as index. The optimum dosage and the best reaction conditions of bentonite have also been studied. The results indicated that the treatment effect of COD on the modified bentonite was better than the natural bentonite. Under the optimum conditions, the removal rate of COD reached 67.85% and the load of biological treatment was reduced on the next step.


2012 ◽  
Vol 599 ◽  
pp. 145-150 ◽  
Author(s):  
Gao Yue ◽  
Hong Wei Ni ◽  
Rong Sheng Chen ◽  
You Wei Li ◽  
Ji Hui Li

Hematiete (α-Fe2O3) nanotube arrays (NTAs) were prepared on the iron foil by the anodization method in an ethylene glycol electrolyte containing NH4F and deionized water. The α-Fe2O3 NTAs electrodes were characterized by field-emission scanning electron microscopy, grazing incidence X-ray diffraction and UV-vis absorbance spectra. As the anodization processed, the morphology of the foil transformed from nanoporous to nanotube arrays.The resulting α-Fe2O3 NTAs showed a pore diameter of 40 nm, thickness of 1.5 μm, and a minimum wall thickness of 10 nm. The photocatalytic activity of the α-Fe2O3 NTAs was evaluated by degradation of azo dye. The significant photocatalytic performance indicated that the α-Fe2O3 NTAs were an effective photocatalyst to decompose organic pollutants.


2021 ◽  
Vol 68 (1) ◽  
pp. 185-192
Author(s):  
Vusala Asim Majidzade ◽  
Akif Shikhan Aliyev ◽  
Mahmoud Elrouby ◽  
Dunya Mahammad Babanly ◽  
Dilgam Babir Tagiyev

The electrochemical reduction of iron (III) ions into zero-valent iron from a solution of ethylene glycol was accomplished. The kinetics and mechanism of the electroreduction process were investigated by cyclic and linear polarization techniques. The influence of temperature, potential sweep rate, and concentration of iron (III) ions on the electroreduction process was also studied. The observed values of effective activation energy revealed that the investigated electroreduction process is accompanied by mixed kinetics control. Moreover, the results of SEM and X-ray diffraction analysis confirmed the deposition of thin Fe films under the optimized conditions.


2020 ◽  
Vol 29 (11) ◽  
pp. 45-49
Author(s):  
L.N. Fedyanina ◽  
◽  
E.S. Smertina ◽  
V.A. Lyakh ◽  
A.E. Elizarova ◽  
...  

The article considers the problem of improving the range of confectionery from the standpoint of use plant materials of satisfaction by consumer demand in dieteticpreventive foods. The analysis of domestic and foreign scientific literature on promising directions of improving the range of dietetic-preventive confectionery is given. It is noted that in the recipes for flour confectionery introduced from non-traditional raw materials containing dietary fiber.


2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3474
Author(s):  
Katarzyna Uram ◽  
Milena Leszczyńska ◽  
Aleksander Prociak ◽  
Anna Czajka ◽  
Michał Gloc ◽  
...  

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document