scholarly journals EVALUATION OF THERMAL INSULATION PERFORMANCE OF PERLITE EXPANDED PARTICLES

2021 ◽  
Vol 21 (3) ◽  
pp. 183-196
Author(s):  
Hadeer Mahmood Yahya ◽  
Karima Esmail Amori

The aim of this work is to test the effectiveness of new thermal insulation material formed from semi-spherical Perlite expanded particles for liquefied petroleum gas (LPG) tanks. Five different samples of semi-spherical particles of (68.8, 90.4, 300.5, 1211000, 1861000) *10-9 m diameter are used as a new thermal insulating material in this work. To simulate the LPG tank wall, a stainless-steel plate of a thickness (3mm) is coated with this material and subjected to a resistive type flat plate heater. The thermal insulation coating thickness was (0.5mm to 2mm). This plate is subjected to different power loads namely (650, 1260 W/m2). Results show that increasing the insulation expanded particle size increases the difference in temperatures on both sides of the insulation layer. The first three sizes of the insulation material reported a temperature difference at both sides of the coating layer is about 18 oC, while that for the fourth and fifth size are 20 oC and 25 oC respectively since larger expanded particles size has higher air content that enables them to reduce and delay heat transfer. The thermal conductivity of coated thermal insulation with large Perlite particle size is (0.25 W/m.K), while that for small size is (0.42 W/m.K). The previously reported thermal conductivity for Silica granules is less than 0.4 W/(m.K)for insulation thickness of (50 mm), while that for binderless cotton stalk fiberboard (BCSF) is ranged from 0.0585 to 0.0815 W/m K for board thickness 25mm. The indicated thermal conductivity for coconut husk and bagasse insulation boards is 0.046 and 0.068 W/mK for board thickness 25mm. So utilizing Perlite expanded particles as an insulation material is superior since it is a slim layer not exceeded 2 mm.

2020 ◽  
Vol 12 (12) ◽  
pp. 4841
Author(s):  
Maria Teresa Ferrandez-Garcia ◽  
Antonio Ferrandez-Garcia ◽  
Teresa Garcia-Ortuño ◽  
Clara Eugenia Ferrandez-Garcia ◽  
Manuel Ferrandez-Villena

The manufacture of technical materials of mineral and synthetic origin currently used for thermal insulation in buildings consumes a large amount of energy and they are not biodegradable. In order to reduce the environmental problems generated by their manufacture, an increasing amount of research is being carried out on the use of renewable and ecological resources. Consequently, the use of plant fibers and natural adhesives in the development of new thermal insulating products is increasing worldwide. Palm trees were used as a replacement for wood in some traditional constructions in places with scarce wood resources. This paper discusses the use of palm pruning waste in the manufacture of particleboards, using citric acid as a natural binder. Five particle sizes of Washingtonia palm rachis were used as the raw material for manufacturing the boards and the citric acid content was set at 10% by weight, in relation to the weight of the rachis particles. Single-layer agglomerated panels were made, applying a pressure of 2.6 MPa and a temperature of 150 °C for 7 min. Twenty panels were produced and their density, thickness swelling, water absorption, modulus of rupture, internal bonding strength and thermal conductivity properties were studied. Smaller particle size resulted in better mechanical properties. The boards had an average thermal conductivity of 0.084 W/m·K, meaning that these boards could be used for thermal insulation in buildings.


1970 ◽  
Vol 17 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Jolanta VĖJELIENĖ ◽  
Albinas GAILIUS ◽  
Sigitas VĖJELIS ◽  
Saulius VAITKUS ◽  
Giedrius BALČIŪNAS

The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


2019 ◽  
Vol 10 (2) ◽  
pp. 59-66
Author(s):  
E. A Biryuzova ◽  
A. S Glukhanov

Through pipelines of heat networks, due to their large length, a large amount of thermal energy is lost. Identification of technical solutions related to improving the energy efficiency of heating networks is an urgent task at present. The article is devoted to the consideration of options for laying pipelines of heat networks during design work. In the conducted studies, two main methods of underground laying of pipelines of heat networks with the choice of the most energy-efficient, with minimal losses of thermal energy are considered. Channel and channelless laying methods are investigated with the same design features and technological conditions of operation of pipelines of heat networks using the same thermal insulation material. For each option, the required thickness of the thermal insulation is determined by the normalized density of the heat flow, thermal calculations are performed to determine the heat loss and the value of the temperature fields generated around the operating pipelines of the heat networks. The obtained values of the thermal insulation thickness in the channel method of laying pipelines are 30-50 % lower than those in channelless laying. The heat loss values, according to the results of the heat calculation for the options under consideration, in the channel method of laying are reduced by 47-65 %. The temperature fields formed around the pipelines of thermal networks with channelless laying significantly exceed the natural value of the soil temperature at the depth of the pipeline. What has a great influence on the determination of the distance to adjacent pipelines and other utilities, laid underground, in the zone of the thermal network. A comparative analysis of the results obtained makes it possible to single out the choice of the method of laying the pipeline into a group of measures aimed at energy saving and increasing energy efficiency in heating systems.


2021 ◽  
Vol 887 ◽  
pp. 480-486
Author(s):  
T.N. Vachnina ◽  
I.V. Susoeva ◽  
A.A. Titunin ◽  
S.V. Tsybakin

Many plant wastes are not currently used in production, they are disposed of in landfills or incinerated. The aim of this study is to develop a composite thermal insulation material from unused spinning waste of flax and cotton fibers and soft wood waste. Samples of thermal insulation materials from plant waste were made by drying using the technology of production of soft wood fiber boards. For composite board defined physico-mechanical characteristics and thermal conductivity. The experiment was carried out according to a second-order plan, regression models of the dependences of the material indicators on the proportion of the binder additive, drying temperature and the proportion of wood waste additives were developed. The study showed that composites from unused spinning waste of plant fibers and soft wood waste have the necessary strength under static bending, the swelling in thickness after staying in water is much lower in comparison with the performance of boards from other plant fillers. The coefficient of thermal conductivity of the boards is comparable with the indicator for mineral wool boards.


Nanoscale ◽  
2020 ◽  
Vol 12 (24) ◽  
pp. 13064-13085 ◽  
Author(s):  
Piyapong Buahom ◽  
Chongda Wang ◽  
Mohammed Alshrah ◽  
Guilong Wang ◽  
Pengjian Gong ◽  
...  

This work aims to predict the thermal conductivity of microcellular and nanocellular thermal insulation foams to explore the correlation between the cellular structure and the thermal insulating properties.


2009 ◽  
Vol 15 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jolanta Šadauskienė ◽  
Andrius Buska ◽  
Arūnas Burlingis ◽  
Raimondas Bliūdžius ◽  
Albinas Gailius

In order to reduce the amounts of work at the construction site, single‐ply dual density thermal insulating roofing boards are used with increasing frequency for thermal insulation of flat roofs. In this case, the joints between boards are not overlapped by the other ply over it; therefore gaps of varying width form between the sides of the boards through the entire thickness of the insulating layer, whose effect on the effective thermal conductivity of the thermal insulating layer must be evaluated. The aim of this project was to assess the reliability of standard method, used to determine the impact of such air gaps on the effective thermal conductivity of the thermal insulating layer by comparing the results of calculations and the results of measurements of thermal conductivity, also to determine the correction factors for thermal transmittance of horizontal thermal insulation layers due to the forming vertical air gaps between the single‐ply mineral wool boards. After measurements of thermal resistances of 50 mm thick thermal insulation board with the air gaps which width varied from 3 mm to 20 mm, it was determined that the thermal conductivity value of the air gaps increases with the increment of the width of air gaps. After completion the experimental measurements of thermal conductivity it was determined that the height of closed and unventilated or partly ventilated air gaps has no effect on the properties of effective thermal conductivity of the thermal insulation layer when the air gap width is up to 5 mm. When wider unventilated or partly ventilated air gaps occur, the effective thermal conductivity coefficient increases proportionally as the height of the air gaps increases. Calculated according to the standard method the affix to the thermal transmittance is overly general and not always appropriate. In some cases it is 6 times higher or 4 times lower than the measured one. In this paper a method to evaluate the effects of air gaps by the use of correction factor to the thermal transmittance of the horizontal thermal insulating layer is proposed. Santrauka Nornt sumažinti darbų apimtis statybos vietoje, stogams šiltinti vis dažniau naudojamos vienu sluoksniu klojamos dvitankės termoizoliacinės plokštės. Šiuo atveju plokščių sandūros neperdengiamos, todėl tarp plokščių kraštinių susidaro įvairaus pločio plyšių, kurių įtaka termoizoliacinio sluoksnio šilumai perduoti turi būti įvertinta. Šio darbo tikslas yra įvertinti standartinio metodo, taikomo tokių plyšių poveikiui sluoksnio šilumos laidumui, patikimumui nustatyti lyginant skaičiavimo ir šilumos laidumo matavimų rezultatus, nustatyti horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento pataisas dėl vertikaliųjų oro plyšių susidarymo. Apskaičiavus 50 mm storio termoizoliacinio sluoksnio oro plyšių šilumines varžas, kai plyšių plotis yra nuo 3–20 mm, nustatyta, kad oro plyšių šilumos laidumo koeficiento vertė didėja didėjant oro plyšio pločiui. Atlikus eksperimentinius šilumos laidumo matavimus, nustatyta, kad susidarančių uždarų ir nevėdinamų arba iš dalies vėdinamų oro plyšių aukštis neturi įtakos termoizoliacinio sluoksnio šilumos laidumo savybėms, kai oro plyšys yra iki 5 mm pločio. Esant platesniems uždariems ir nevėdinamiems oro plyšiams, šilumos laidumo koeficientas proporcingai didėja didėjant oro plyšių aukščiui. Pagal standartinį metodą skaičiuotas šilumos perdavimo koeficiento priedas yra per daug apibendrinantis ir ne visada tinkamas. Kai kuriais atvejais jis yra 6 kartus didesnis arba 4 kartus mažesnis už išmatuotąjį. Šiame darbe pasiūlytas horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento priedo, naudojamo plyšių įtakai įvertinti, skaičiavimo metodas.


2013 ◽  
Vol 772 ◽  
pp. 178-181
Author(s):  
Yong Liang Zhan ◽  
Hai Yang Chen ◽  
Xing Hua Hou ◽  
Fei He

Non-shrinking composite silicate insulation material has advantages of low drying shrinkage, density, thermal conductivity and good thermal insulation which withstands high temperature and militates in favor of specially shaped structural member construction, etc. This article describes raw materials and the production process of the above material, discusses thermal insulation characteristics, technical performance and the features of use and particularizes the application effect in the project.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2012 ◽  
Vol 178-181 ◽  
pp. 46-50
Author(s):  
Wang Ping Wu ◽  
Zhou Chen ◽  
Cheng Dong Li ◽  
Teng Zhou Xu ◽  
Jin Lian Qiu ◽  
...  

The insulation material VIP in building offers a new material for highly insulated constructions with just a fraction of the required insulation thickness compared to conventional thermal insulation materials. A VIP is basically composed of the core material, the barrier film and getters. Core materials of VIP are glass fiber, fumed silica, fiber-powder composite core. The barrier film covered by glass fiber textile is the protection of the envelope against surface damage and fire attack. We introduce the VIP elements, the system of VIPs in building application and external thermal insulation system with VIP.


Sign in / Sign up

Export Citation Format

Share Document