scholarly journals EXPERIMENTAL INVESTIGATION ON THE EFFECT OF ADDING CYCLOHEXANONE TO GASOLINE IN SI ENGINE EMISSIONS AND PERFORMANCE

2021 ◽  
Vol 21 (4) ◽  
pp. 259-273
Author(s):  
Abed Al-Khadhim M. Hassan ◽  
Sadeq Abdul-Azeez Jassam

The aim of the present work is to investigate the influence of adding some ketone compounds on the performance, emissions, heat balance and exhaust gas temperature of spark ignition engine. The ketone used in this study is cyclohexanone (C6H10O). This ketone has been added to the base fuel (gasoline) with three concentration ranges (3, 6 and 9%) respectively. All experimental tests were carried out on gasoline engine type (Nissan QG18DE), four cylinders, 4-stroke, direct injection, with compression ratio (9.5:1). The acquired results showed that adding of ketones affect the physical properties of gasoline. Where the density changed from (710 kg/m3) for net gasoline to (740.8 kg/m3) for cyclohexanone at adding ratio of (9%). The octane number also increased from (86) for pure gasoline to (97.7) for fuel with 9% cyclohexanone. The calorific value will be decrease from (43000 kJ/kg) for gasoline to (42077.5) for cyclohexanone at adding ratio of (9%). The addition of ketones improves the emissions characteristic of engine. The best reduction of (UHC, CO_2, CO and NOx) was (49.04, 22.43, 35.02 and 42.14%) recorded by cyclohexanone addition at ratio of (9%). In the case of performance, all parameters of performance improved by adding ketones. The brake specific fuel consumption reduced by (8.9%) by adding (9%) of cyclohexanone which recorded as the best reduction through all types. The best increment of brake power, brake thermal efficiency, brake mean effective pressure and volumetric efficiency was (17.3, 8.98, 17.25 and 12.7%) is achieved by adding (9%) of cyclohexanone. Also, the exhaust gas temperature will be increase by adding ketones. The percentage increasing of exhaust gas temperature was (28.31%) recorded by cyclohexanone addition at ratio of (9%). In the case of heat balance, the best increment of total heat internal energy was (6.59) at (9%) of cyclohexanone.  

Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola

A comparative series of experimental tests has been performed on a 4-stroke multi cylinder indirect injection diesel engine fueled with diesel oil, pure gas-turbine fuel and gas-turbine fuel with additives. The engine has been equipped aimed at monitoring both the overall performances and the variation with time of the pressure in the pre-combustion chamber. Some key parameters have been investigated at different engine speeds and loads (ignition delay, pressure rise in the pre-combustion chamber, power output, specific fuel consumption, exhaust gas temperature) and discussed results are presented.


2014 ◽  
Vol 555 ◽  
pp. 375-384 ◽  
Author(s):  
Stelian Tarulescu ◽  
Adrian Soica

This paper present a study regarding the emissions produced at the engine cold start. Also, the paper presents a brief survey of current extra emissions estimation methods. The main goal of this work is to describe the relative cold start extra emissions as a function of exhaust gas temperature. Experimental research has been done for a light vehicle, Dacia Sandero, equipped with a 1390 cm3 Renault spark ignition engine (Power = 55 kW at 5500 rpm). There were been made several tests, in different temperature conditions, in the could season, using a portable analyzer, GA-21 plus (produced by Madur Austria). The parameters measured with the analyzer and used in the analysis are: CO, NO, NOx and SO2. It was concluded that the highest pollutants values ​​are recorded until the point when the catalyst comes into operation (when the gas temperature entering the catalyst is approx. 200 oC) and exhaust gas temperature is 40-50 oC. In order to accomplish a mathematical approximation of CO, NO and SO2 in function of exhaust gas temperature, logarithmic approximations and polynomial regressions were used. The curves resulted from the mathematical model can be used to approximate the level of CO, NO and SO2, for similar vehicles.


2021 ◽  
Vol 09 (08) ◽  
pp. 53-78
Author(s):  
Joseph Lungu ◽  
Lennox Siwale ◽  
Rudolph Joe Kashinga ◽  
Shadreck Chama ◽  
Akos Bereczky

2019 ◽  
Vol 22 (1) ◽  
pp. 295-315 ◽  
Author(s):  
Reza Golzari ◽  
Hua Zhao ◽  
Jonathan Hall ◽  
Mike Bassett ◽  
John Williams ◽  
...  

Introduction of ever more stringent emission regulations on internal combustion engines beyond 2020 makes it necessary for original equipment manufacturers to find cost-effective solutions to improve the combustion engine efficiency and decrease its emissions. Highly efficient combustion engines can benefit from technologies such as cooled external exhaust gas recalculation and water injection. Among these technologies water injection can be used as a promising method to mitigate knock and significantly reduce the CO2 emissions. This is particularly important in highly downsized boosted engines which run under much higher intake pressures and are more prone to knocking combustion. In addition to anti-knock behaviour, water injection is also an effective method for reducing NOx emissions and exhaust gas temperature at high loads, which can protect the turbine in turbocharged engines. This study shows the influence of intake port injection of water on efficiency and emissions of a boosted downsized single-cylinder gasoline direct-injection engine in detail. Six different steady-state speed and load combinations were selected to represent the conditions that knocking combustion start to occur. Water ratio sweep tests were performed to find out the optimum water/fuel ratio at each test point and the impact on the combustion and emissions. In addition to gaseous emissions, impact of water injection on particle emissions was also investigated in this study. The results show the net indicated efficiency improved significantly (by a maximum of around 5% at medium load and around 15% at high load) up to a maximum level by increasing the injected water mass. Improvement in efficiency was mainly due to the increased heat capacity of charge and cooling effect of the injected water evaporation which reduced the in-cylinder temperature and pressure. Thus, knock sensitivity was reduced and more advanced spark timings could be used, which shifted the combustion phasing closer to the optimum point. However, increasing the water/fuel ratio further (more than 1 at medium load and more than 1.5 at high load) deteriorated the combustion efficiency, prolonged the flame development angle and combustion duration, and caused a reduction in the net integrated area of the P-V diagram. Efficiency improvements were lower at higher engine speed (3000 r/min) as the knock sensitivity was already reduced intrinsically. In terms of other, harmful, non-CO2 emissions, water injection was effective in reducing the NOx emissions significantly (by a maximum of around 60%) but increased the HC emissions as the water/fuel ratio increased. The results also show a significant reduction in particle emissions by adding water to the mixture and advancing the spark timing at medium and high loads. In addition, water injection also reduced the exhaust gas temperature by around 80°C and 180°C at medium and high loads, respectively.


2019 ◽  
Vol 24 (6) ◽  
pp. 263-267
Author(s):  
Maciej Siedlecki ◽  
Paweł Fuć ◽  
Barbara Sokolnicka ◽  
Natlia Szymlet

The article discusses the effect of exhaust aftertreatment systems configuration on the resulting exhaust gas temperature at selected points of the exhaust system. Catalytic reactors and particle filters must reach a specific temperature in order to effectively perform their functions. The temperature they obtain decreases with the increasing distance from the exhaust manifold, as the gases cool along the way. The performed research consisted of measuring the exhaust gas temperature in various places of the exhaust system in simulated driving conditions mapped on the dynamic engine brake station in the aspect of using a particulate filter and its resulting operating efficiency due to the temperature. Measuring the temperature using thermo-couples allowed to assess the probability of achieving full operation of the filters during urban and extra-urban exploitation in a simulation of real driving conditions.


2019 ◽  
Vol 19 (4) ◽  
pp. 381-404
Author(s):  
Ahmed Mohsin Gatea ◽  
Karima Esmaeel Amori ◽  
Hammid Unis Salih

Liquefied petroleum gas LPG is a good alternative to gasoline fuel. It has emerged as a solution to the deteriorating urban air quality problem especially in an oil country like Iraq. Computational model  is used for parametric study of spark ignition engine works on Iraqi fuel (gasoline or LPG). Transient one dimensional continuity, momentum and energy equations are solved by two – step Lax wender off (Ritchmyer) approach to evaluate brake specific fuel consumption BSFC, brake power, brake thermal efficiency, volumetric efficiency, air fuel ratio, in cylinder pressure and exhaust gas temperature. Results revealed that LPG fuel improves BSFC by 3.11% as a maximum compare to gasoline for 10 kW brake power and 9.9:1 compression ratio. The maximum cylinder pressures predicted for LPG are lower than that for gasoline fuel. The volumetric efficiency was 76.8 % for engine works with, LPG at compression ratio 9.9:1. While that for gasoline was 85.9%. The equivalence ratio is higher for gasoline than that for LPG, since the first required higher air-fuel ratio for combustion. The reported maximum exhaust gas temperature for LPG is 706oC, while that for gasoline is 741.4oC.


Author(s):  
Karthik Nithyanandan ◽  
Chia-fon F. Lee ◽  
Han Wu ◽  
Jiaxiang Zhang

Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuels which typically emit fewer pollutants, but also lowers the cost of fuel recovery for each individual component during fermentation. An experiment was conducted using a Ford single-cylinder spark-ignition (SI) research engine to investigate the potential of ABE as an SI engine fuel. Blends of pure gasoline and ABE, ranging from 0% to 80% vol. ABE, were created and the performance and emission characteristics were compared with pure gasoline as the baseline. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxides were used to compare the fuels in terms of combustion byproducts. Experiments were performed at a constant engine speed and a comparison was made on the basis of similar power output (Brake Mean Effective Pressure (BMEP)). In-cylinder pressure data showed that the peak pressure of all the blends was slightly lower than that of gasoline, except for ABE80 which showed a slightly higher and advanced peak relative to gasoline. ABE showed an increase in brake specific fuel consumption (BSFC); while exhaust gas temperature and nitrogen oxide measurements show that ABE combusts at a lower peak temperature. The emissions of unburned hydrocarbons were higher compared to those of gasoline but the CO emissions were lower. Of particular interest is the combined effect of the higher laminar flame speed (LFS) and higher latent heat of vaporization of ABE fuels on the combustion process.


SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Hadi Pranoto ◽  
Dafit Feriyanto ◽  
Supaat Zakaria

Catalytic converter (CATCO) and its effect on engine performance and exhaust gas temperature became an exciting field in automotive research. In this study purposed to compare existing CATCO which is ceramic and metallic with FeCrAl CATCO that treated with a combination of ultrasonic bath and electroplating technique in 30 minutes holding time (UB+EL 30 min). This study proposed to select an appropriate CATCO that used in a gasoline engine to increase the performance and to reduce the exhaust gas temperature as well as its potential to reduce the exhaust gas emission. Mitsubishi 4G93 conducted this analysis with 1.8 L and 10.5 compression ratio with a variable speed of 100, 2000 and 3000 rpm and different engine load of 10, 20 and 30%. The result shows that the FeCrAl CATCO was more useful to reduce fuel consumption up to 66.42% and increase torque up to 15.79% as well as reduce exhaust gas temperature up to 30.11% as compared to ceramic and metallic CATCO. It can be concluded that FeCrAl CATCO coated by UB+EL 30 min was recommended to increase engine performance and to reduce exhaust gas emission.


Sign in / Sign up

Export Citation Format

Share Document